

REPORT NO.

512017

LIMITED ENVIRONMENTAL SITE ASSESSMENT, LOT 491, DP729381 AND LOT 284, DP755684, TAMARIND DRIVE, BALLINA, NSW

ENVIRONMENTAL EARTH SCIENCES NNSW REPORT TO GEOLINK 28 FEBRUARY 2013 VERSION 0

EXECUTIVE SUMMARY

Environmental Earth Sciences was requested by Geolink, on behalf of Ballina Shire Council (Council) to undertake a limited environmental site assessment (ESA) of Lot 491 DP729381 and Lot 284 DP755684, Tamarind Drive, Ballina, NSW. We understand that Council wish to assess the suitability of the site for redevelopment as a sporting facility.

A limited desktop study and site intrusive investigation were undertaken as part of the assessment. The desktop study included review of available maps, aerial photographs and a previous environmental report and found that the site was formerly used as a landfill and council depot, and is currently being used as a council depot.

The field investigation consisted of 32 testpits and 8 surface samples, from which select samples were analysed by the laboratory for potential chemicals of concern.

Results of the field investigation, including field observations and laboratory analyses, showed that contamination on the eastern portion of the site is limited to the presence of waste material with no analytes detected exceeded guideline values. Petroleum hydrocarbons (C_{10} - C_{36}) were detected in the vicinity of the wash-down area on the depot. These exceeded sensitive landuse guidelines however are not considered to present a risk to site workers or the environment based on the current site zoning (rural) and landuse as a depot and storage space. If a more sensitive zoning is sought, this area would require further assessment.

This preliminary assessment did not detect gross contamination concentrations that would preclude consideration of the site for an indoor sporting facility. However, further assessment and consideration of matters not limited to, but including subsidence, landfill waste management (including cap integrity), groundwater quality, potential gas and leachate generation, infrastructure positioning and site access will be required to determine the suitability of the site for redevelopment as an indoor sporting facility.

Project Manager Alice Plioplis Senior Geologist

Project Director / Internal Reviewer Christine Pitman Principal Scientist ⁵¹²⁰¹⁷

TABLE OF CONTENTS

1	INTR	ODUCTION	. 1
2	OBJI	ECTIVE AND SCOPE OF WORKS	. 1
3	DAT	A QUALITY OBJECTIVES	. 2
	3.1	DATA QUALITY OBJECTIVES	2
	3.2	DATA QUALITY INDICATORS	3
4	SITE	IDENTIFICATION AND HISTORY	. 5
	4.1	SITE IDENTIFICATION	5
	4.2	CURRENT AND HISTORICAL SITE USE AND POTENTIAL FOR CONTAMINATION	5
	4.3	SITE HISTORY	6
		4.3.1 Previous work	6
		4.3.2 Aerial photograph review	6
		4.3.3 Other site photographs	7
		4.3.4 Interviews with former and current employees	7
		4.3.5 Summary	8
5	SITE	ENVIRONMENTAL SETTING	. 8
	5.1	REGIONAL GEOLOGY AND SOILS	8
	5.2	REGIONAL AND LOCAL HYDROGEOLOGY AND SURFACE WATER	8
	5.3	TOPOGRAPHY, DRAINAGE AND VEGETATION	9
	5.4	SITE STRATIGRAPHY	9
		5.4.1 Fill material	9
		5.4.2 Waste	10
		5.4.3 Natural	10
6	FIEL	D PROGRAM	11
	6.1	BOREHOLE LOCATIONS	11
	6.2	METHODOLOGY	11
	6.3	SITE OBSERVATIONS	11
7	ASSI		12
8	LAB	ORATORY ANALYSIS	14
	8.1	ANALYTICAL SCHEDULE	14
	8.2	QUALITY ASSURANCE AND CONTROL	14
	8.3	SUMMARY OF RESULTS	16
9	DISC	USSION	16
	9.1	COUNCIL DEPOT	16
	9.2	LANDFILL AREA	17
	9.3	LANDUSE LIMITATIONS	18

ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW

10	CONCLUSION AND RECOMMENDATIONS	18
11	LIMITATIONS	19
12	REFERENCES	20
13	GLOSSARY OF TERMS	20

FIGURES

TABLES

APPENDICES

- A TESTPIT LOGS
- B QUALITY ASSURANCE AND CONTROL PROCEDURES
- C LABORATORY TRANSCRIPTS & CHAIN OF CUSTODY FORMS
- D CALIBRATION CERTIFICATES

1 INTRODUCTION

Environmental Earth Sciences was requested by Geolink, on behalf of Ballina Shire Council (Council) to undertake a limited environmental site assessment (ESA) at the Ballina Council Depot (number 2), Tamarind Drive, Ballina, NSW. We understand that Council wish to assess the suitability of the site for redevelopment as an indoor sporting facility. Council selected a portion of land encompassing Lot 491 DP 729381 and Lot 284 DP 755684, Tamarind Drive, Ballina (the site), as a potential location for an indoor sports stadium. This limited ESA will assist Ballina Council to decide if this site should be considered further.

According to a preliminary historical review by Environmental Analysis Laboratory (EAL) Consulting, portions of this land had been used as:

- a landfill site for Ballina (Lot 284);
- a disposal area for night soil (Lot 284);
- a transfer station and animal pound (Lot 491); and
- a secondary works depot for Council (Lot 491).

In light of the former site uses and the unknown extent of potential contamination, Council required a staged contamination assessment to identify any significant contamination issues that would preclude consideration of this site for such a development.

2 OBJECTIVE AND SCOPE OF WORKS

The objective of the work is to determine if the site is suitable for potential redevelopment as an indoor sporting facility with associated carpark.

The scope of works to meet the objective included:

- a preliminary site inspection and discussion with Council staff, a desktop study of soil, geology, hydrogeology and topography;
- preparation of a Sampling and Analysis Plan for the proposed field work;
- field and laboratory program in accordance with the SAP;
- preparation of a report detailing the works undertaken and recommendations for further investigation, management or remediation works (if required).

3 DATA QUALITY OBJECTIVES

3.1 Data quality objectives

The Data Quality Objectives (DQOs) process is a systematic approach used to define the type, quantity and quality of data supporting decisions which relate to the environmental condition of a site. Undertaking DQOs for site assessment and remediation is a requirement of DEC (2006). The DQO process was formulated by the US EPA and provides sound guidance for a consistent approach to understanding site assessment and remediation.

The DQOs are defined in a series of seven steps as presented in Table 1.

TABLE 1 DATA QUALITY OBJECTIVES

Step	Description	Comment		
1	Ballina Shire Council is considering the suitability of the site for the development of an indoor sports stadium. A preliminary contamination investigation is required to evaluate the potential contamination associa with the reported former landfill, nightsoil disposal area and operation of depot site. This preliminary assessment is intended to be a screening p and will assist in determining the need for any future investigation and/ remediation.			
2	2 Identify the decision Once the site has been investigated and site conditions characterised decisions will be made as to whether potential contamination would predevelopment at this site and whether the site is likely to pose an act to ecological and/or human health.			
3	Identify the inputs for the decision	Inputs into the decision comprise a soil investigation. Laboratory results will then be compared to standard commercial/industrial soil guideline values.		
4	Define the boundaries for the study	The site is described as Lot 491 DP 729381 and Lot 284 DP 755684, Tamarind Drive, Ballina. The temporal boundary of the project is restricted to the timing of the investigation.		
5	 All analytical data for chemicals of concern in soil across the site will b compared and evaluated against appropriate published criteria. NEPC will be used as the primary guidance document in decision making on levels. Dependent upon the sampling and analysis design, statistical parameters such as arithmetic mean, standard deviation and 95% upp confidence limits (95% UCLs) may be applied to designated soil popul for particular analytes. In the event that action levels are exceeded, a management plan, remedial action plan, and/or qualitative risk assess may be required. These procedures constitute the alternative action plan. 			
6	Specify tolerable limits on decision error	Most of the procedures in the NSW EPA (1995), Standards Australia AS 4482.1 (2005) and NEPC (1999) have risk probabilities associated with allowable error margins incorporated into them. It is therefore proposed that no further "tolerable limits" be investigated at this stage of the project. Acceptable limits for field data analysis (relative percent differences for primary and duplicate results) are between 50 and 150 percent (depending on the origin of the sample and volatility of the chemicals present). Acceptable limits for laboratory duplicate analysis may be affected by the heterogeneity of soil and will be set based on site specific information such as background concentrations.		

Step	Description	Comment			
7	Optimise the design for obtaining data	The investigation will target areas of potential contamination to assess where possible the lateral and vertical extent of impact. The sample layout, density and testing regime proposed in the following sections is considered suitable for a preliminary assessment taking into account temporal limitations and access constraints.			

3.2 Data quality indicators

Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters. The following PARCC (and additional QA) parameters will be discussed further in the QA/QC section of this report:

- repeatability;
- precision;
- accuracy;
- representativeness;
- completeness;
- comparability;
- sensitivity;
- holding times;
- blanks; and
- procedures for anomalous samples and confirmation checking.

The data quality indicators for this project are presented in Table 2.

MEASUREMENT DATA QUALITY INDICATORS TABLE 2

Parameter	Procedure	Minimum Frequency	Criteria		
Faranieter	Flocedule	Winning Frequency	(5 to 10x LOR ⁴)	>10x LOR	
		1 in 20 - metals	<80 RPD	<50 RPD	
Precision	Field Duplicates	1 in 20 - semi-volatiles	<100 RPD	<80 RPD	
Frecision		1 in 20 - volatiles	<150 RPD	<130 RPD	
	Lab Replicate*	1 in 20	<50 RPD	<30 RPD	
A *	Reference Material	4 1 40	60% to 140%R	80% to 120%R	
Accuracy*	Surrogate spikes	1 in 10			
Bonrocontotivonoco*	Reagent Blanks	1 per batch	No detection		
Representativeness*	Holding Times*	Every sample	-		
Blanks**	Rinsate Blanks	1 per batch	No detection		
Sensitivity	Limit of Reporting	Every sample	LOR < 1/2 site criteria		

Notes:

- 1. RPD - relative percentage difference;
- %R percent recovery; 2
- 3. LOR limit of reporting;
- 4. 4 no limit at <5x LOR;

* the MDQI is usually specified in the standard method. If not, use the default values set out in this table; and 5.

6. ** only necessary when measuring dissolved metals and volatile organic compounds in water samples.

Intra-laboratory duplicates (blind field duplicates) for soil should be collected and analysed at a rate of 5% of primary samples. Inter-laboratory (or split) duplicate should also be collected and analysed at 5%.

Soil trip spikes or trip blanks were not collected as the material on site is different to the well graded and washed sand used for spikes (and therefore not comparable).

It should be noted that Standards Australia (AS4482.1) specify that typical MDQIs for precision should be ≤50% RPD, however it is also acknowledged that low concentrations and organic compounds in particular can be acceptable outside this range. The standard suggests that ≤50% RPD be used as a 'trigger' and values above this level of repeatability need to be noted and explained.

Our adopted MDQI's for precision acknowledge the intrinsic heterogeneity of metal and semivolatile chemical concentrations in disturbed soil that may potentially cause large variations in results between laboratory subsamples (although all efforts are made to homogenise non volatile duplicate samples). Similarly, large variations in volatile chemical concentrations between duplicates may be unavoidable even when using best practice sampling methodology, especially as we seek to minimise the disturbance to the sample while splitting it which means a high degree of inherent heterogeneity is expected.

As such, our adopted RPD criteria are considered to be a suitable measure for the reproducibility of results within a naturally heterogeneous media such as soil. A >50% RPD trigger value will be used, with any exceedances being discussed and assessed for acceptability within the context of the proposed investigation.

4 SITE IDENTIFICATION AND HISTORY

4.1 Site identification

At the time of the onsite investigation (22 and 23 January 2013), the Depot portion of the site was operational with workers loading and unloading materials into trucks. Both the Depot and former landfill portions of the site were being used for the storage of plant, equipment and materials. Table 3 summarises the relevant site details.

Item	Details	
Address	Tamarind Drive, Ballina, NSW	
Lot and DP Numbers and site owners	Lot 491 DP 729381 – Ballina Shire Council Lot 284 DP 755684 – Crown land	
Site area	5.76 ha	
Local Government Authority	Ballina Shire Council	
Landuse zoning (LEP 1987)	1 (d) Rural (Secondary Agricultural Land)	
Surrounding landuse	North – North Creek, commercial/industrial properties beyond this South – commercial properties East – wetlands	
	West – residential properties and retail (Ballina Fair) beyond Tamarind Drive	
Locality and site map	Figure 1 and Figure 2	

TABLE 3 SITE IDENTIFICATION DETAILS

4.2 Current and historical site use and potential for contamination

The site is currently used for the storage of mostly Council equipment, plant and materials. The western portion of the site, Lot 491 (~1.6 ha), has historically been used as the Council depot as well as a transfer station and animal pound (Figure 2).

The eastern portion of the site, Lot 284 (~4.16 ha) was historically used a landfill area and for disposal of night soil (Figure 2).

Potential for contamination associated with these landuses include fertilisers, fungicides, herbicides, pesticides, solvents, hazardous materials and hydrocarbons. Targeted chemicals of concern are discussed further in Section 8.1.

4.3 Site history

A brief site history was compiled from readily available information such as aerial photographs and discussions with site staff. Please note that no official records of landfilling are available at this time which is a limiting factor in the interpretation of the landfill area.

4.3.1 Previous work

A letter prepared by EAL Consulting Services (EAL) was provided for review as part of this assessment. The letter presented a brief desktop review of aerial photographs and online records regarding the site. It also proposed a sampling and analysis plan.

The letter provided the following information:

- "Historical aerial photography indicates that the surrounding land use has been predominantly agricultural or vacant land until recently where the lands to the south and east have become industrial and residential". It is noted that photographs from the following years were reviewed 1947, 1958, 1967, 1991, 2006 and 2009;
- No existing notices on the Contaminated Land Record register;
- No existing licences under the Protection Of Environment Operations Act 1997;
- from a dangerous goods register search "two 70kg Chlorine gas cylinders are located in a shed approximately 110 m east of Tamarind Drive. The Site holds a Dangerous Goods Licence (Licence no. 35/031962) under Workcover NSW relating to the storage of dangerous goods at Tamirind (sic) Drive, Ballina and is listed on the Stored Chemical Information Database (SCID)"; and
- the closest cattle tick dip site in Ballina was approximately 1 km north of the site and has been demolished.

In addition, the letter states that Lot 284 was used as a landfill site for Ballina, and night soil disposal, while Lot 491 (currently used as a depot) was used as a transfer station and an animal pound.

4.3.2 Aerial photograph review

Environmental Earth Sciences reviewed a series of aerial photographs taken by the NSW Department of Lands in an attempt to corroborate the historical assessment undertaken by EAL Consulting. Reference will be made to Lot 491 (currently housing the Council Depot) and Lot 284 (the former landfill site).

Table 4 outlines the photographs that were assessed. In addition, descriptions taken from EAL (2012) for photographs from 1947 and 1958 have been included for completion.

TABLE 4 AERIAL PHOTOGRAPHS

Date	Run	Map No	Series
21/5/1967	9	5132	Lismore-Ballina
9/8/1971	5	5004	Ballina
1/8/1987	6	257	Lismore
2001	15	4558	Ballina

Significant observations

1947 photograph (EAL, 2012)

"The 1947 image indicates that all of the Lots are relatively undeveloped mostly cleared land with scatted trees. Also it appears that there was a small building located in the north eastern section of Lot 491."

1958 photograph (EAL, 2012)

"The 1958 image shows that there has been some minor clearing of the all the Lots with an increase in size of the building noted in the previous image that was situated in the north eastern section of Lot 491 and now also the north western section of Lot 284."

1967 photograph

The 1967 aerial photograph shows that both Lots have been disturbed, being mostly cleared of vegetation with the exception of the trees along the creek bank (still present on site today). There appears to be many stockpiles on Lot 284, while there are several discernible buildings on Lot 491. Surrounding land both adjacent and across Tamarind Drive was undeveloped.

1971 photograph

A greater proportion of Lot 284 appears to be utilised as evidenced by a greater number of stockpiles and more cleared vegetation. Some new small sheds on Lot 491 are present in this photograph.

Development of the industrial subdivision to the east of the site has commenced with construction of the roads and several buildings.

1987 photograph

Infrastructure on Lot 491 in this photograph appears similar to the present day, while the majority of land across Lot 284 has been disturbed with stockpiles distributed throughout. The vegetation along the eastern boundary has been cleared, perhaps in association with the construction of a drainage channel at the rear of the adjacent industrial subdivision.

2001 photograph

Lot 491 appears in line with current site conditions, while operational land use within Lot 284 looks to be limited about the central access road as the remainder of the site looks to be well vegetated, mostly with grass.

4.3.3 Other site photographs

An aerial photograph provided for the area by Geolink, provided a view at a better resolution, although the exact date of the photograph is unknown, but estimated at approximately 2009. Details shown by this figure confirm that much of Lot 284 continues to be utilised for stockpiling excess material and equipment.

4.3.4 Interviews with former and current employees

Very little historical information was available for the site however a long time employee remembers that the night soil disposal pits were dug by hand. This could suggest that the pits were not as extensive in size or depth as initially thought.

4.3.5 Summary

In summary, the site has been in use since at least 1947. Stockpiling was evident in the 1967 photograph, so that landfilling would have occurred at the site prior to this and potentially continued through the site history.

The site has been used for more than 60 years, with historical uses including plant, machinery and equipment storage, materials stockpiling, animal pound, landfilling and night soil disposal.

5 SITE ENVIRONMENTAL SETTING

5.1 Regional geology and soils

The regional geology is described by Brown, *et al* (2007) as Quaternary aged (<1.8 million years) sediments. The site is located close to a geological boundary, between alluvial sediments and coastal and estuarine plain deposits. Typical sediments in these settings include sand, silt, clay, gravel and organic clays. The natural material encountered at the site included mostly sands, sandy clays and clays, consistent with the regional geology expected. Site stratigraphy is described further in Section 5.4.

Review of soil landscapes map for the area (Morand, 1994) indicated that the site is part of the disturbed terrain and has been greatly disturbed by human activity to a depth of at least 100 cm. The original soil has been removed, greatly disturbed or buried. Local relief <10 m, slopes <5%. Landfill includes soil, rock, building and waste material. The original vegetation has been completely cleared.

5.2 Regional and local hydrogeology and surface water

Information acquired from a NSW Water Information (2013) database search of registered groundwater bores revealed there were up to 35 licensed groundwater bores within a 1 km radius of the site. Registered purposes included domestic and monitoring. Domestic purposes were typically private owners, while the monitoring bores were registered under Ampol Pied Piper Service Station. This service station was redeveloped into fast food eateries.

Where driller's logs were completed in the groundwater works summaries, information was gleaned regarding subsurface geology. To the north-west of the site, coarse sand was present to at least 5 mbgl, and with groundwater observed from 3 mbgl. To the south of the site (former Ampol service station), groundwater was encountered at 1.8 mbgl in grey sand, which was overlain by gravelly clays.

Groundwater at the site was expected to be relatively shallow (i.e. <1.8 m) due to its close proximity to North Creek, towards which it likely flows. North Creek is a tidally influenced water body which flows south into the Richmond River (~2 km south), which in turn drains into the ocean, approximately 4 km south-east of the site. North Creek is considered to be the nearest sensitive environmental receptor to the site.

During the testpit program at the site, water was encountered within natural sands at the western portion of the site between 1.0 and 1.4 mbgl, while at the eastern portion at 1.3 (TP22 on the river bank, which included a hydrogen sulfide odour) and 2.1 mbgl (TP26,

through the landfill) in natural clay. It is noted that as the eastern portion is elevated relative to western, specifically TP26, the relative level of groundwater is similar at these locations. Water was also encountered within waste material at 2.5 mbgl, which had a distinct chemical odour.

5.3 Topography, drainage and vegetation

The site is located in a topographically low area relative to the surrounding land. It is generally flat, with a mound formed in eastern portion, in the area of the former landfill. Relative to the neighbouring properties, the former landfill appears to be raised by approximately 1.5 to 2 metres. This is also evident from a previous survey plan provided by Council, dated December 1993, where the eastern portion of the site was over 1 m higher than the western portion. It is expected that topography varies over time, since activities started prior to 1947 (Section 4.3.5).

The western portion of the site (the depot) is partly sealed by bitumen (~30 %), partly gravel (~50 %) and partly grassed (~20 %). Surface run off would infiltrate to the subsurface in the unsealed areas or flow into a small creek that intersects the site (flows south to north), as well as a small drainage line beyond the former animal pound, both of which drain to North Creek. A drainage line is also present along part of the southern boundary which would capture any runoff from the former landfill in that area (Figure 2).

Vegetated areas were present at the site, including trees and grass, with all areas that were not paved with bitumen or gravel, or covered by stockpiled material, being covered by grasses. The more heavily vegetated areas were along the creek bank, and along the small drainage creek that intersects the site. Figure 2 provides an indicative distribution of the vegetation encountered onsite.

5.4 Site stratigraphy

Site stratigraphy that was encountered during the field investigation generally included three types of material – fill, waste and natural. These are described in further detail in the following sub-sections, with testpit logs presented in Appendix A. Cross sections of the stratigraphy are shown on Figures 3 and 4.

5.4.1 Fill material

Fill material at the site was encountered in the western portion predominately, within the Council Depot. This varied in depth between 0.2 and 1.1 metres below ground level (mbgl) and consisted of a variety of types including the following:

- loose to firm, dark grey, silty clay with gravel (up to 20 %), dark yellow/brown sand with black clay,
- fragments of weathered grey rock (5 30 cm) with some dry orange/brown clay and gravels; and
- reworked natural clay dark brown clay with red mottles, some rubbish (~20%: broken tiles, Perspex plastic, glass fragments)

A hydrocarbon odour was noted at locations TP10 (0.4-0.5 mbgl) in natural sands and TP12 (0.6-0.7 mbgl) in fill material. Green staining was also observed in the TP12 fill material at this depth, associated with the odour. These testpits are located in the vicinity of a wash-down area and the odours and staining may be associated with previous fuel spills.

A sweet chemical odour was noted at location TP6 within a rocky fill layer (0.2-0.3 mbgl) and the clayey fill material directly underlying this layer (0.4-0.5 mbgl). No volatile organic compounds (VOCs) were detected during the field screening with a photo ionisation detector (PID).

Fill at eastern portion of the site was typically encountered overlying the waste material from the ground surface to approximately 0.3 mbgl. This material could be considered a capping layer and generally consisted of black or dark grey silty clay, silt and fine gravels. It is likely that this surface fill material changes over time as several stockpiles are located in this are with heavy plant and machinery requiring access to these and the ground would need to be maintained for good access. Other fill material encountered included the reworked natural brown/red clays which appear to have been used to fill gaps and voids during landfilling or if a change in the levels at the site were required. This material was encountered typically on the northern edge of the landfill (e.g. TP17 and TP18) and within the waste material (e.g. TP19, TP21 and TP28).

5.4.2 Waste

Waste associated with former landfilling activities was encountered on the eastern portion of the site only (Lot 284, Figure 2) at locations TP16, TP19, TP20, TP21, TP26, TP27, TP28 and TP29, between 0.3 and to a depth greater than 3.2 mbgl (at location TP27). Typically the waste material included:

- dark brown silty clay and clay, black clays (50-70 %), mixed clays, roots;
- demolition rubble (up to 60 %) consisting of broken tiles, ceramic pipes, bricks, wood, barbed wire, metal pipes, star pickets;
- roots, gravels, fragmented cobble and bolder sized rocks (up to 60 %);
- general rubbish consisting of aluminium cans, plastic bottles, clothing, plastic bags (30 %);
- one tree trunk (1.3 m x0.4 m) at 1.3 mbgl at location TP26; and
- portion of a car body part at 0.8 mbgl at location TP27.

A sweet, chemical odour was noted within the waste water bearing zone at 2.5 mbgl at location TP27. VOCs were detected in waste material at location TP29 ranging between 2-25 parts per million (ppm) in the top 0.3 metres of the testpit to 144 ppm at 2.0 mbgl. No odours were associated with these VOC measurements. The pH of waste material was moderately acidic (6) to basic (8.5).

5.4.3 Natural

Natural soils at the site included sands and clays, typical of alluvial deposits. These are described as follows:

- loose yellow/brown/dark grey fine grained sands, moderately acidic to moderately basic (pH 5.0 to 8.0), with occasional gravels and roots; and
- dark grey/brown clay or sandy clay, with occasional dark orange/red mottles, slightly acidic to moderately basic (pH 6.5 to 8.0).

Hydrogen sulfide odour was noted within the natural sands at location TP3 (1.4-1.5 mbgl) and TP6 (1.1-1.2 mbgl), and in the natural clay at location TP22 (1.2-1.4 mbgl).

6 FIELD PROGRAM

6.1 Borehole locations

The sampling and analysis plan (Environmental Earth Sciences NNSW, 2013) presents a detailed rationale for investigation locations. This is summarised in Table 5.

TABLE 5 SAMPLING LOCATION RATIONALE

Sampling point	Rationale	
TP1-7	Site coverage around the council depot to determine the vertical and lateral extent of contamination	
TP8-10	Targeted the former animal pound and asphalt storage	
TP11-14	Targeted the remainder of the depot, targeting various drums and above ground storage tank	
TP15-19	Site coverage about the transition area between council depot and former landfill	
TP22-25	Targeted the potential night soil disposal area	
TP20, 21 26-32	Targeted potential former landfill area to delineate the extent of filled area	
SS1-8	Surface samples collected within or immediately outside of sheds, buildings, storage areas	

6.2 Methodology

An experienced environmental scientist undertook all fieldworks including logging and sample collection. Soil samples were collected on a discrete basis at changes in the lithology and/or at regular intervals. Detailed logs of the testpits describing the soil profile, noting any odours or visible signs of contamination are presented in Appendix A.

Samples were placed into laboratory prepared jars (organic analysis) and plastic bags (inorganic analysis) by the scientist wearing disposable nitrile gloves and placed into chilled Eskies.

All soil samples were screened using a photo ionisation detector (PID) to determine the presence of volatile organic compounds as well as assist the sample selection process for laboratory analysis.

Sample containers were labelled with a waterproof marker with the following information: project number, location, sample depth and date of sample collection. All soil samples were transported to the laboratory on ice within 24-48 hours of sampling.

6.3 Site observations

A site walkover was undertaken during the fieldworks. The following information was observed:

• the western portion of the site (the depot) was occupied by one large warehouse style building at the centre of the lot, a smaller derelict building in the north-west corner

(former animal pound) and several smaller demountable buildings and shipping containers. The ground surface was either sealed by bitumen or hardstand (~80 %) with the remainder consisting of grass cover, trees or bare ground;

- a wash-down area was present to the immediate north-east of the former animal pound building, which appeared to be used on a regular basis;
- an old, very corroded above ground storage tank was present at the north-east corner of the depot. The previous contents of this tank are unknown, but based on the dark black staining, it was likely to have contained bitumen emulsion used in two coat seals. From the previous dangerous goods site search in EAL (2012) the only licensed dangerous goods for the site are two chlorine gas cylinders;
- various areas of the depot were used for storage of materials including metal poles, fencings, wood, safety barricades (plastic, concrete), signage;
- the eastern portion of the site (former landfill) was used for stockpile material storage and was accessed on a daily basis. Materials included gravels, mulch, soil, broken concrete slabs and other concrete structures (for the repair of the Ballina bar seawall). Note that the stockpiles were not assessed during this investigation;
- measurements for the presence of gas were taken in select testpits and ambient air using a landfill gas analyser (GEM2000). No landfill gases typical of putrescible wastes were detected (methane, carbon dioxide, carbon monoxide and hydrogen sulfide). This is in line with the type of waste observed in testpits (Section 5.4.2); and
- a drainage line was present along the southern boundary which intersected the site between the depot and former landfill and drained north eventually into North Creek. There was water present in the drain where it intersected the site, which appeared stagnant at the time of the investigation.

7 ASSESSMENT CRITERIA

The NSW DEC (2006) cites investigation levels for soil in the assessment of site contamination. The soil investigation levels presented are based on the National Environmental Health Forum (1996) *Health based soil investigation levels* which has been updated and nationally endorsed through the National Environment Protection Council (1999) *National Environment Protection (Assessment of Site Contamination) Measure*.

These investigation levels are derived from toxicity of substances and estimated exposure of humans to the soil. If the site redevelopment is undertaken, the site is expected to be rezoned as commercial/industrial landuse. Accordingly the commercial/industrial investigation levels in the NSW DEC (2006) will be considered as a screening guide in this investigation.

For substances where the NEHF (1996) and NEPC (1999) have not provided heath based soil investigation levels (i.e. benzene, toluene, ethyl-benzene, xylene, petroleum hydrocarbons C_6 - C_9 and C_{10} - C_{40}) the sensitive landuse guidelines in the NSW EPA (1994) can be used as a screening guide.

TABLE 6 HEALTH BASED SOIL INVESTIGATION LEVELS

	Health-based Soil Investigation Levels (mg/kg)				Phytotoxicity	
Substance	Standard Residential	High Density Residential	Parks & Open Spaces	Commercial & Industrial	Levels (mg/kg)	
Metals and Metalloids						
Arsenic (total)	100	400	200	500	20	
Cadmium	20	80	40	100	3	
Chromium (III)	12%	48%	24%	60%	400	
Chromium (VI)	100	400	200	500	1	
Copper	1,000	4,000	2 000	5,000	100	
Lead	300	1,200	600	1,500	600	
Mercury (inorganic)	15	60	30	75	1	
Nickel	600	2,400	600	3,000	60	
Zinc	7,000	28,000	14 000	35,000	200	
Organics	Organics					
Polyaromatic hydrocarbons (total)	20	80	40	100	-	
Benzo(a)pyrene	1	4	2	5	-	

Note: Table derived from DEC NSW (2006) Contaminated Sites: Guidelines for the NSW Site Auditors Scheme (2nd edition)

TABLE 7 NSW EPA (1994) THRESHOLD - SOILS

Analytes	Threshold Concentrations (mg/kg dry wt)	Sources
TPH: C ₆ -C ₉	65	-
TPH: C ₁₀ -C ₄₀	1,000	-
Benzene	1	ANZECC/NHMRC 1992
Toluene	130	Netherlands 1994
Ethyl benzene	50	Netherlands 1994
Total Xylene	25	Netherlands 1994
Total Lead	300	ANZECC/NHMRC 1992
Benzo(a)pyrene	1	ANZECC/NHMRC 1992
Total PAHs	20	ANZECC/NHMRC 1992

Note: Threshold concentrations have been derived from the NSW EPA (1994) Guidelines for assessing service station sites.

8 LABORATORY ANALYSIS

8.1 Analytical schedule

Table 8 identifies the laboratory analysis schedule for soil samples collected during this investigation. Not all samples were submitted for analysis of all chemicals of potential concern (CoPCs). Samples were selected on the basis of field observations and coverage.

The analytes selected are based on determination of the CoPC for the site. The analytical methods selected are based on those recommended by the laboratories and publications such as Standard methods for the examination of water and waste-water (APHA 2005, 21st edition).

Analyte	No. primary samples	No. of field blind duplicates	Duplicate rate achieved
Heavy metals	31	4	13%
ТРН	15	3	20%
РАН	6	2	33%
втех	9	1	11%
8260	8	1	13%
8270	3	0	0%

TABLE 8 ANALYTICAL SCHEDULE

Note: methods used are reported in the laboratory transcripts appended and are detailed in the Standard methods for the examination of water and waste-water (APHA 2005 and/or Soil Chemical Methods (Rayment & Lyons 2010).

8.2 Quality assurance and control

Quality assurance and quality control (QA/QC) procedures were undertaken throughout the sampling program with disposable gloves changed between locations and sample collection as required. Furthermore, quality control is achieved by utilising NATA accredited laboratories, using standard methods supported by internal duplicates, the checking of high, abnormal or otherwise anomalous results against background and other chemical results for the sample concerned.

During the investigation, a calibrated landfill gas analyser was used to screen for landfill gases. A calibration certificate for this instrument is presented in Appendix D.

A total of four (4) field duplicates were submitted for various analyses as presented in Appendix B. In brief, the relative percent differences (RPD) of duplicate results were generally within the acceptable range of reproducibility as were internal laboratory duplicate and standards.

In accordance with our QA/QC procedure, those samples with a RPD of >50% have been presented in Table 9 for discussion. Both inter laboratory duplicates (between the primary and secondary laboratories) and intra laboratory (within the primary laboratory) have been included.

Results from some analyses were below the level of reporting and thus could not be calculated.

Sample	Analyte	Duplicate RPD (type)	Applicable RPD limit	Type of material
TP7 (0.5-0.7) + FD1	Cu	75.86 % (inter)	80	Natural
TP7 (0.5-0.7) + FD1	Zn	59.74 % (inter)	50	Natural
TP7 (0.5-0.7) + FD1	Cr	98.51 % (inter)	50	Natural
TP7 (0.5-0.7) + FD1	Ni	81.48 % (inter)	50	Natural
TP15 (0.2-0.3) + FD3	Cu	127.71 % (intra)	50	Fill
TP15 (0.2-0.3) + FD3	Zn	54.78 % (inter)	50	Fill
TP15 (0.2-0.3) + FD3	Cr	53.33 % (inter)	50	Fill
TP15 (0.2-0.3) + FD3	Ni	61.22 % (inter)	50	Fill
TP15 (0.2-0.3) + FD3	As	52.63 % (inter)	80	Fill
SS5 (0.0-0.1) + FD4	Cu	56.25 % (inter)	50	Fill
SS5 (0.0-0.1) + FD4	Pb	50.19 % (inter)	50	Fill
SS5 (0.0-0.1) + FD4	Cr	79.07 % (inter)	50	Fill
SS5 (0.0-0.1) + FD4	As	66.67 % (inter)	80	Fill
SS5 (0.0-0.1) + FD4	C ₂₉ - C ₃₆	104.52 % (inter)*	130	Fill
SS5 (0.0-0.1) + FD4	$C_{10} - C_{36}$	126.53 % (inter)*	130	Fill
SS5 (0.0-0.1) + FD4	C ₁₅ -C ₂₈	141.90 % (inter)	130	Fill

TABLE 9SUMMARY OF RPD EXCEEDANCES

Note: * exceed trigger value of 50% however are within acceptable limits.

Fourteen RPD values for the intra and inter laboratory duplicate samples exceeded 50% RPD. In accordance with Standards Australia these exceedances have been noted and the variations are thought to be associated with limitations with the field splitting method and low concentration levels (close to the method detection limit).

Most exceedances were calculated for heavy metals inter-laboratory duplicates from fill material. Fill material can be heterogeneous, with heavy metals typically forming in clusters, thus it is expected that some variety will be encountered within samples. In addition, different laboratories place samples within extraction liquids for a varying amount of time, which may produce slightly different results. This may be the case for heavy metals in the natural material of sample and duplicate TP7 (0.5-0.7) and FD1, where exceedances were noted for heavy metals in the inter-laboratory duplicate.

The only organic exceedances was for petroleum hydrocarbons C_{15} - C_{28} in the interlaboratory duplicate of SS5 (0.0-0.1), a surface fill sample. This sample was collected from an area where a thin layer of pitch (~3 cm) overlies the fill material and it is possible that some fill material was collected for the inter-laboratory duplicate that was in contact with this. The intra-laboratory duplicate did not display the same difference. The RPD exceedances do not represent significant concern to the integrity of the data set as the source of the exceedances can be interpreted through sound field observations.

Extraction and analysis of samples were all within the relevant prescribed holding times. The internal laboratory control results (blanks, duplicates and spikes) are considered to be acceptable.

In summary, the quality assurance and control program has demonstrated that the laboratory data is reliable. A quality assurance and control report for this project is present in Appendix B.

8.3 Summary of results

Most results of organic analyses were below the limit of detection or reporting for the laboratory and thus only those detected are presented in the report (Table 10 and Table 11). Analytical results of the heavy metals are presented in Table 12.

Complete laboratory transcripts and associated chain of custody forms are provided in Appendix C.

Laboratory analysis showed low concentrations of heavy metals in fill and natural material below the health investigation criteria for commercial/industrial landuse criteria (DEC, 2006).

Organic analytes were also generally non-detectable or below guideline values. Notable detections include:

- TP10 (0.4-0.5) C10-C36 was 930 mg/kg (below sensitive landuse guideline value);
- TP12 (0.6-0.7) C10-C36 was 2,570 mg/kg (above sensitive landuse guideline value);
- SS5 (0.0-0.1) C10-C36 was 630 mg/kg (below sensitive landuse guideline value); and
- SS6 (0.0-0.1) C10-C36 was 510 mg/kg (below sensitive landuse guideline value).

The result for TP 12 is not considered to be of concern based on the following reasons:

- the exceedance is at a depth of 0.6-0.7 mbgl and dermal exposure is unlikely; and
- any leachable petroleum hydrocarbons would attenuate naturally prior to reaching North Creek which is located approximately 75 m north of testpit TP12. Natural attenuation would include microbial breakdown and/or sorption of BaP in organic rich alluvial clays, dispersion and dilution.

9 **DISCUSSION**

9.1 Council Depot

Contamination at the depot portion of the site (west) is limited to petroleum hydrocarbon impact at location TP10 (0.4-0.5) and TP12 (0.6-0.7), based on field and laboratory data. The only exceedance of guidelines was for TP12 (0.6-0.7) C_{10} - C_{40} however these guidelines are for sensitive use and do not represent a risk to sensitive environmental receptors or site

workers, as the site is currently zoned rural. If the land zoning was to change to a more sensitive use then further assessment may be needed.

From review of testpit logs and cross sections, the depot was in-filled over time with various types of fill, derived from on site (dark brown clays) and offsite (inclusion of gravels, broken bottles and the like) to level the site to its current elevation. The depth to natural soil becomes greater towards North Creek which is expected as water bodies are typically topographically low.

9.2 Landfill area

When assessing landfill it is prudent to determine the risks presented by potential physical exposure, leachate migration and seepage, subsidence and landfill gas.

From the data collected in this assessment the following conclusions can be made:

- physical exposure: the fill material placed on top of the waste can be considered a landfill cap and varies in thickness from 0.2 to 0.3 m and consists of silt and silty clay. This cap would not comply with guideline requirements (NSW EPA, 1996) for design of landfill caps for current landfills. Further assessment of the landfill cap integrity (thickness, permeability and quality) would be required to determine potential surface water infiltration, as well as release of landfill gas (final landfills caps are typically at least 2 m thick consisting of layers for sealing, gas drainage, infiltration drainage and revegetation). This assessment may allow for a site specific cap design and provide justification for non conformance with the requirements of the NSW EPA (1996) guidelines;
- leachate: groundwater was encountered at one location within the waste material and had a sweet, chemical odour. This demonstrates that groundwater is flowing through the waste and leaching chemicals. As groundwater has not been assessed or characterised, the extent of potential impact is unknown. A leachate plume could potentially exist and would likely flow north towards North Creek and eventually drain into the creek. No seepage from the former landfill was observed during the field works. Seepage is likely to occur after heavy rain events, and would likely pool in low lying areas (e.g. the drainage line to the south of the site or along the creek bank to the north;
- landfill gas: gas is generated from decomposition of organic waste (including
 putrescible and green waste). The waste encountered at the site was predominately
 inert demolition rubble mixed with other wastes (car parts, glass bottles etc) with
 minimal organic waste. It is noted however that typically in old landfills, organic waste
 is present within 'pockets', and would not have been placed in the same location. It
 may be possible that more organic waste is present in parts of the landfill that were not
 accessed during the field investigation, which may potentially create landfill gas. No
 landfill gases were detected at concentrations that pose a risk during the fieldworks;
 and
- subsidence: it is expected that some subsidence would have occurred to date. A survey from 1993 was provided for this assessment however the current levels are unknown. An assessment of previous or potential future subsidence cannot be made at this time without further assessment.

9.3 Landuse limitations

The following limitations are typically associated with former landfill sites. A detailed landfill assessment (including waste and gas) would be required to demonstrate if the landfill poses a risk to human health or the environment.

The following limitations would require consideration when planning the redevelopment:

- if structures (including buildings or a carpark) were to be constructed on the landfill, ground subsidence may occur (over time and in the short term);
- corrosion of buildings and materials due to landfill gases may occur;
- if gas is present, this may accumulate below or within buildings and therefore a gas mitigation or management plan would be required;
- a site management plan would be required to document the presence of the landfill that outlines current site conditions and management practices for any future site works. This is typically noted on Council planning certificates;
- a site management plan should be developed to ensure that any site works including movement of machinery or plant must not damage the integrity of the current landfill cap. Improvements to the cap design in accordance with NSW EPA (1996) are recommended; and,
- site access and reshaping the landform should also be considered. At the time of this investigation, the access to site is from Tamarind Drive. An increase in thoroughfare at the site entry would impact local traffic conditions so an alternative should be considered. Any other access point may require reshaping the land to create a roadway. This may require relocating waste. Considerations would include the onsite containment of waste or offsite disposal, potential exposure to waste and environmental impacts to flora, fauna, water bodies, site users and neighbouring properties.

10 CONCLUSION AND RECOMMENDATIONS

A limited desktop study and site intrusive investigation were undertaken at the Ballina Depot at the request of Geolink (on behalf of Ballina Shire Council). The desktop study included review of available maps, aerial photographs and a previous environmental report and found that the site was formerly used as a landfill and council depot, and is currently being used as a council depot. This information was used to develop a sampling and analysis plan for a field investigation.

The field investigation consisted of 32 testpits and 8 surface samples, from which select samples were analysed by the laboratory for potential chemicals of concern.

Results of the field investigation, including field observations and laboratory analyses, showed that contamination is limited to the presence of waste material within the eastern portion of the site with no analytes detected exceeding guideline values. In addition, petroleum hydrocarbons (C_{10} - C_{36}) were detected in the vicinity of the wash-down area on the depot. These exceeded sensitive landuse guidelines however are not considered to present a risk to site workers or the environment based on the current site zoning (rural) and landuse as a depot and storage space. If a more sensitive zoning is sought, this area would require further assessment.

This preliminary assessment did not detect gross contamination concentrations that would preclude consideration of the site for an indoor sporting facility. However, further assessment and consideration of matters not limited to, but including subsidence, landfill waste management (including cap integrity), groundwater quality, potential gas and leachate generation, infrastructure positioning and site access will be required to determine the suitability of the site for redevelopment as an indoor sporting facility.

If Council decides that they would like to continue exploring the possibility of redeveloping this land then the following recommendations should be considered once the location of the building/ infrastructure footprint has been determined:

- detailed characterisation of waste and potential for gas generation (including landfill cap and leachate);
- testing of stockpiles on site to determine suitable options for their disposal or relocation;
- assessment of potential subsidence (including a survey of the site);
- geotechnical assessment for stability of proposed building structures; and
- studies on the impact to local and regional traffic conditions.

11 LIMITATIONS

This report has been prepared by Environmental Earth Sciences NNSW ABN 109 442 284 in response to and subject to the following limitations:

- 1. The specific instructions received from Geolink;
- The specific scope of works set out in PO512021 issued by Environmental Earth Sciences for and on behalf of Geolink, is included in Section 2 (Objective and scope of work) of this report;
- May not be relied upon by any third party not named in this report (with the exception of Ballina Shire Council) for any purpose except with the prior written consent of Environmental Earth Sciences NNSW (which consent may or may not be given at the discretion of Environmental Earth Sciences NNSW);
- 4. This report comprises the formal report, documentation sections, tables, figures and appendices as referred to in the index to this report and must not be released to any third party or copied in part without all the material included in this report for any reason;
- 5. The report only relates to the site referred to in the scope of works being located at Tamarind Drive, Ballina, NSW ("the site");
- 6. The report relates to the site as at the date of the report as conditions may change thereafter due to natural processes and/or site activities;
- 7. No warranty or guarantee is made in regard to any other use than as specified in the scope of works and only applies to the depth tested and reported in this report;
- 8. Fill, soil, groundwater and rock to the depth tested on the site may be fit for the use specified in this report. Unless it is expressly stated in this report, the fill, soil and/or rock may not be suitable for classification as clean fill if deposited off site; and
- 9. Our General Limitations set out at the back of the body of this report.

12 REFERENCES

- American Public Health Association (APHA) 2005, *Standard methods for the examination of water and waste-water*, 21st edition, APHA, Washington DC.
- Brown, R.E, Cranfield, L.C., Denaro, T.J., Burrows, P.E., Henley, H.F., Stroud, W.J., Brownlow, J.W. (2007) *Warwick-Tweed Heads 1:250,000 Metallogenic map SH/56 2-3*, geological Survey of NSW, Maitland and Geological Survey of QLD, Brisbane
- Environmental Earth Sciences NNSW (2013) Sampling and analysis plan for a preliminary contamination assessment, Ballina Council, Depot, Tamarind Drive, Ballina, NSW; report number 512017_SAP
- Morand, D. T. (1994) Soil landscapes of the Lismore-Ballina 1:100 000 Sheet Map, Soil Conservation Service of NSW, Sydney
- National Environment Protection Council (NEPC) (1999) National Environment Protection (Assessment of Site Contamination) Measure (NEPM)
- NSW Department of Environment and Conservation (2006) Contaminated sites: guidelines for the NSW site auditor scheme
- NSW Department of Environment and Conservation (2007) Contaminated sites: guidelines for the assessment and management of groundwater contamination;
- NSW Environment Protection Authority (1994) Contaminated sites: guidelines for assessing service station sites
- NSW EPA (1996) Environmental guidelines: Solid Waste Landfills
- NSW Environment Protection Authority (1995) Contaminated sites: sampling design guidelines
- NSW Environment Protection Authority (2011) *Guidelines for consultants reporting on* contaminated sites
- Rayment, GE & Higginson, FR 1992, Australian laboratory handbook of soil and water chemical methods, Inkarta Press, Melbourne.
- Standards Australia AS 4482.1 (1997) Guide to the sampling and investigation of potentially contaminated soil
- Standards Australia, 2005, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, (AS 4482.1)
- Standards Australia, 1999, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances, (AS4482.2)

13 GLOSSARY OF TERMS

The following descriptions are of terms used in the text of this report.

Alluvial describes material deposited by, or in transit in, flowing water.

Background natural level of a property.

Borehole an uncased well drill hole.

Clay Soil material composed of particles finer than 0.002 mm. When used as a soil texture group such soils contain at least 35% clay.

Cobble rock fragment, rounded or abraded between 64 and 256 mm in diameter. Cobbles are larger than gravel and smaller than boulders.

Contaminant generally, any chemical species introduced into the soil or water. More particularly relates to those species that render soil or water unfit for beneficial use.

Contamination is considered to have occurred when the concentration of a specific element or compound is established as being greater than the normally expected (or actually quantified) background concentration.

Discrete sample samples collected from different locations and depths that will not be composited but analysed individually.

Fluvial material deposited by, or in transit, in streams or watercourses.

Gradient rate of inclination of a slope. The degree of deviation from the horizontal; also refers to pressure.

Groundwater water held in the pores of an aquifer.

Heavy Metals all metallic elements whose atomic mass exceeds that of calcium (20) and includes lead (Pb), copper (Cu), Zinc (Zn), cadmium (Cd), and tin (Sn).

Hydrocarbon molecule consisting of carbon and hydrogen atoms only, such as found in petroleum.

Leachate water that flows through waste material (or other material) will liberate soluble molecules to form leachate.

Mottled masses, blobs or blotches of sub-dominant, varying colours in the soil matrix.

Organics chemical compounds comprising atoms of carbon, hydrogen and others (commonly oxygen, nitrogen, phosphorous, sulfur). Opposite is inorganic, referring to chemical species not containing carbon.

Permeability property of porous medium relating to its ability to transmit or conduct liquid (usually water) under the influence of a driving force. Also referred to as hydraulic conductivity.

pH logarithmic index for the concentration of hydrogen ions in an aqueous solution, which is used as a measure of acidity.

Phytotoxicity toxic concentration of a substance that is associated with symptoms of toxicity or reduced vigour, growth, and production of a plant.

Plume spreading of a contaminant from a point source, under the influence of dispersion, diffusion and the like.

Polycyclic aromatic Hydrocarbons (PAH's) complex organic molecules which originate typically in the combustion of organic compounds.

Profile the solum. This includes the soil A and B horizons and is basically the depth of soil to weathered rock.

Putrescible waste food waste, waste consisting of animal matter (including dead animals or animal parts) or biosolids categorised as Stabilisation Grade C in accordance with the criteria set out in the Biosolids Guidelines.

QA/QC Quality Assurance / Quality Control.

Remediation restoration of land or groundwater contaminated by pollutants, to a state suitable for other, beneficial uses.

Representative Sample assumed not to be significantly different than the population of samples available. In many investigations samples are often collected to represent the worst case situation.

Saturated Zone zone in which the rock or soil pores are filled (saturated) with water.

Stratigraphy vertical sequence of geological units.

Subsidence the downward settling of material with little horizontal movement.

Subsoil subsurface material comprising the B and C horizons of soils with distinct profiles. They often have brighter colours and higher clay content than topsoils.

Texture is the size of particles in the soil. Texture is divided into six groups, depending on the amount of coarse sand, fine sand, silt and clay in the soil.

Topsoil part of the soil profile, typically the A1 horizon, containing material which is usually darker, more fertile and better structured than the underlying layers.

Toxicity the inherent potential or capacity of a material to cause adverse effects in a living organism.

Unsaturated zone vadose zone. The zone between the land surface and the water table, in which the rock or soil pores contain both air and water.

Volatile having a low boiling or subliming pressure (a high vapour pressure).

ENVIRONMENTAL EARTH SCIENCES GENERAL LIMITATIONS

Scope of services

The work presented in this report is Environmental Earth Sciences response to the specific scope of works requested by, planned with and approved by the client. It cannot be relied on by any other third party for any purpose except with our prior written consent. Client may distribute this report to other parties and in doing so warrants that the report is suitable for the purpose it was intended for. However, any party wishing to rely on this report should contact us to determine the suitability of this report for their specific purpose.

Data should not be separated from the report

A report is provided inclusive of all documentation sections, limitations, tables, figures and appendices and should not be provided or copied in part without all supporting documentation for any reason, because misinterpretation may occur.

Subsurface conditions change

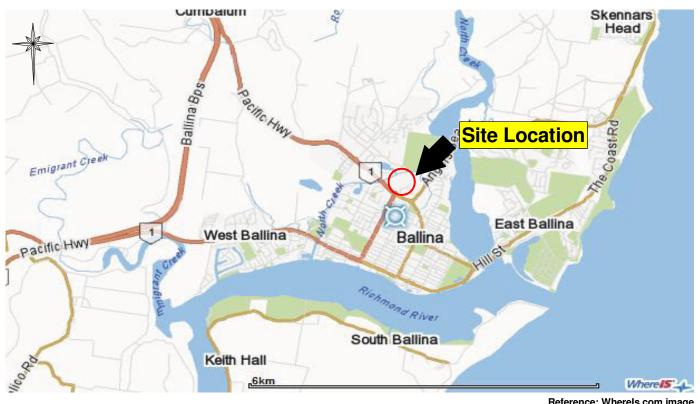
Understanding an environmental study will reduce exposure to the risk of the presence of contaminated soil and or groundwater. However, contaminants may be present in areas that were not investigated, or may migrate to other areas. Analysis cannot cover every type of contaminant that could possibly be present. When combined with field observations, field measurements and professional judgement, this approach increases the probability of identifying contaminated soil and or groundwater. Under no circumstances can it be considered that these findings represent the actual condition of the site at all points.

Environmental studies identify actual sub-surface conditions only at those points where samples are taken, when they are taken. Actual conditions between sampling locations differ from those inferred because no professional, no matter how qualified, and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden below the ground surface. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from that predicted. Nothing can be done to prevent the unanticipated. However, steps can be taken to help minimize the impact. For this reason, site owners should retain our services.

Problems with interpretation by others

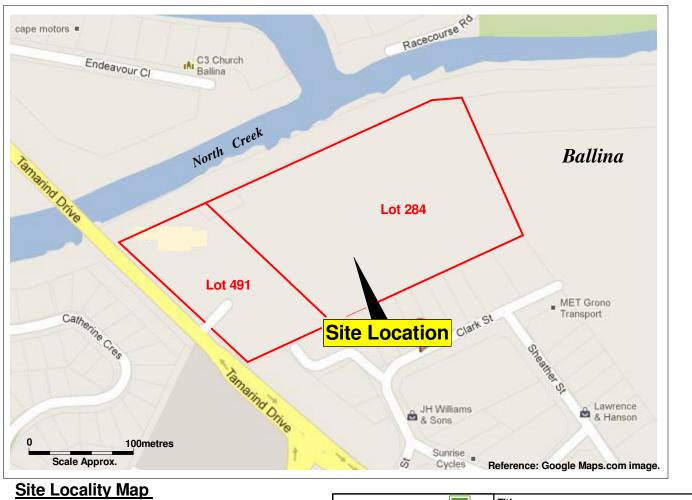
Advice and interpretation is provided on the basis that subsequent work will be undertaken by Environmental Earth Sciences NNSW. This will identify variances, maintain consistency in how data is interpreted, conduct additional tests that may be necessary and recommend solutions to problems encountered on site. Other parties may misinterpret our work and we cannot be responsible for how the information in this report is used. If further data is collected or comes to light we reserve the right to alter their conclusions.

Obtain regulatory approval

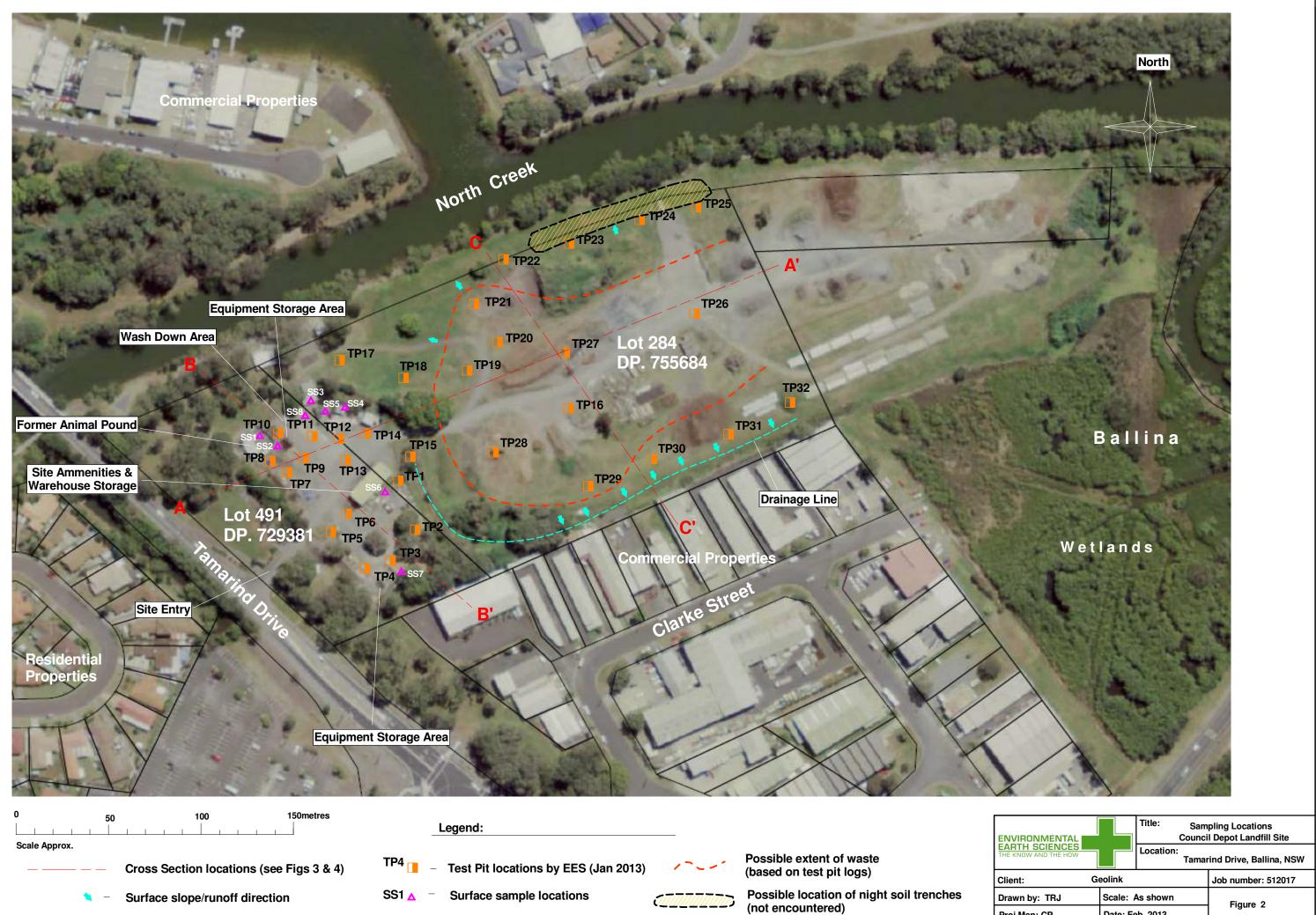

The investigation and remediation of contaminated sites is a field in which legislation and interpretation of legislation is changing rapidly. Our interpretation of the investigation findings should not be taken to be that of any other party. When approval from a statutory authority is required for a project, that approval should be directly sought by the client.

Limit of liability

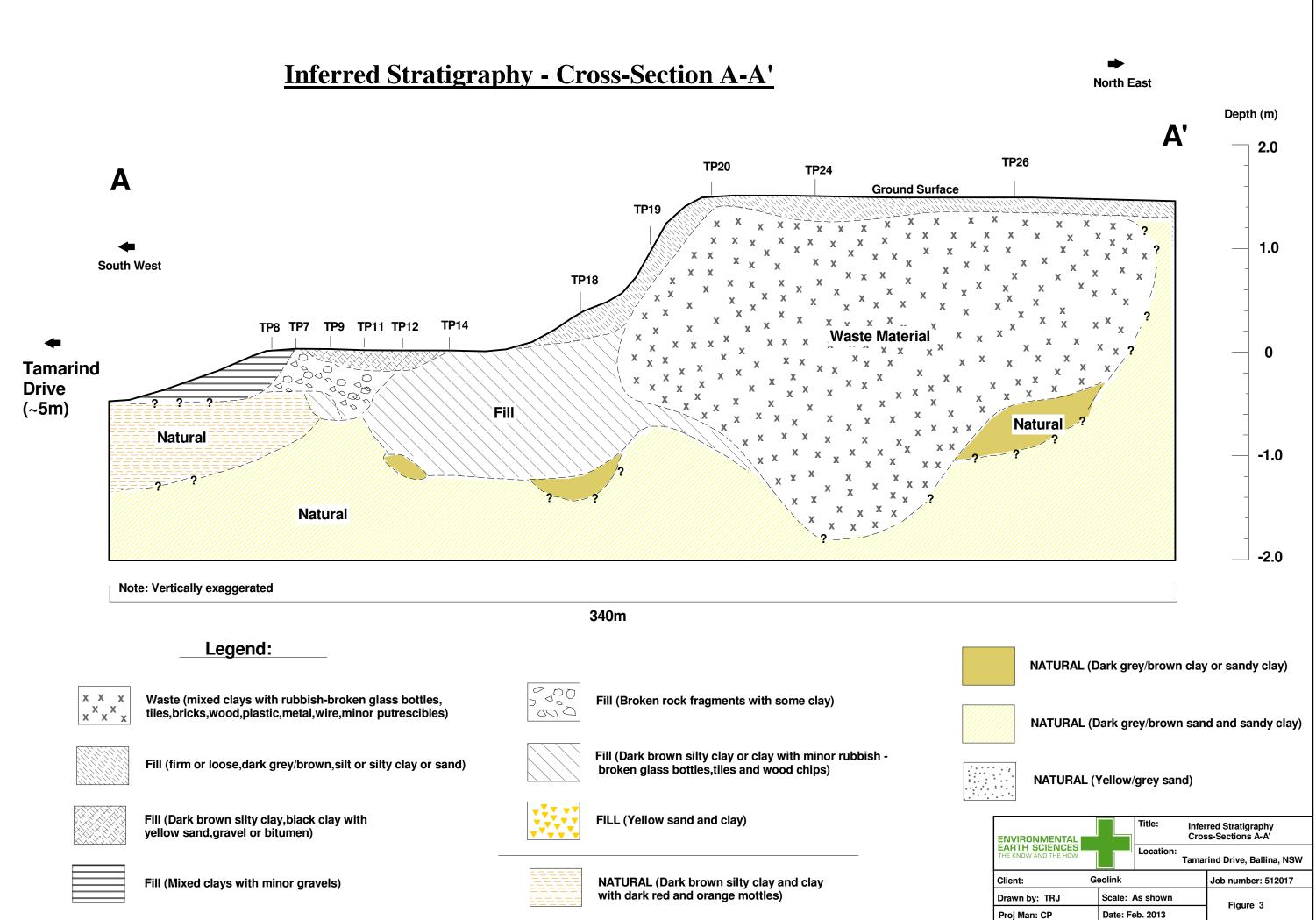
This study has been carried out to a particular scope of works at a specified site and should not be used for any other purpose. This report is provided on the condition that Environmental Earth Sciences NNSW disclaims all liability to any person or entity other than the client in respect of anything done or omitted to be done and of the consequence of anything done or omitted to be done by any such person in reliance, whether in whole or in part, on the contents of this report. Furthermore, Environmental Earth Sciences NNSW disclaims all liability in respect of anything done or omitted to be done and of the consequence of anything done or omitted to be done and of the consequence of anything done or omitted to be done and of the consequence of anything done or omitted to be done by the client, or any such person in reliance, whether in whole or any part of the contents of this report of all matters not stated in the brief outlined in Environmental Earth Sciences NNSW's proposal number and according to Environmental Earth Sciences general terms and conditions and special terms and conditions for contaminated sites.

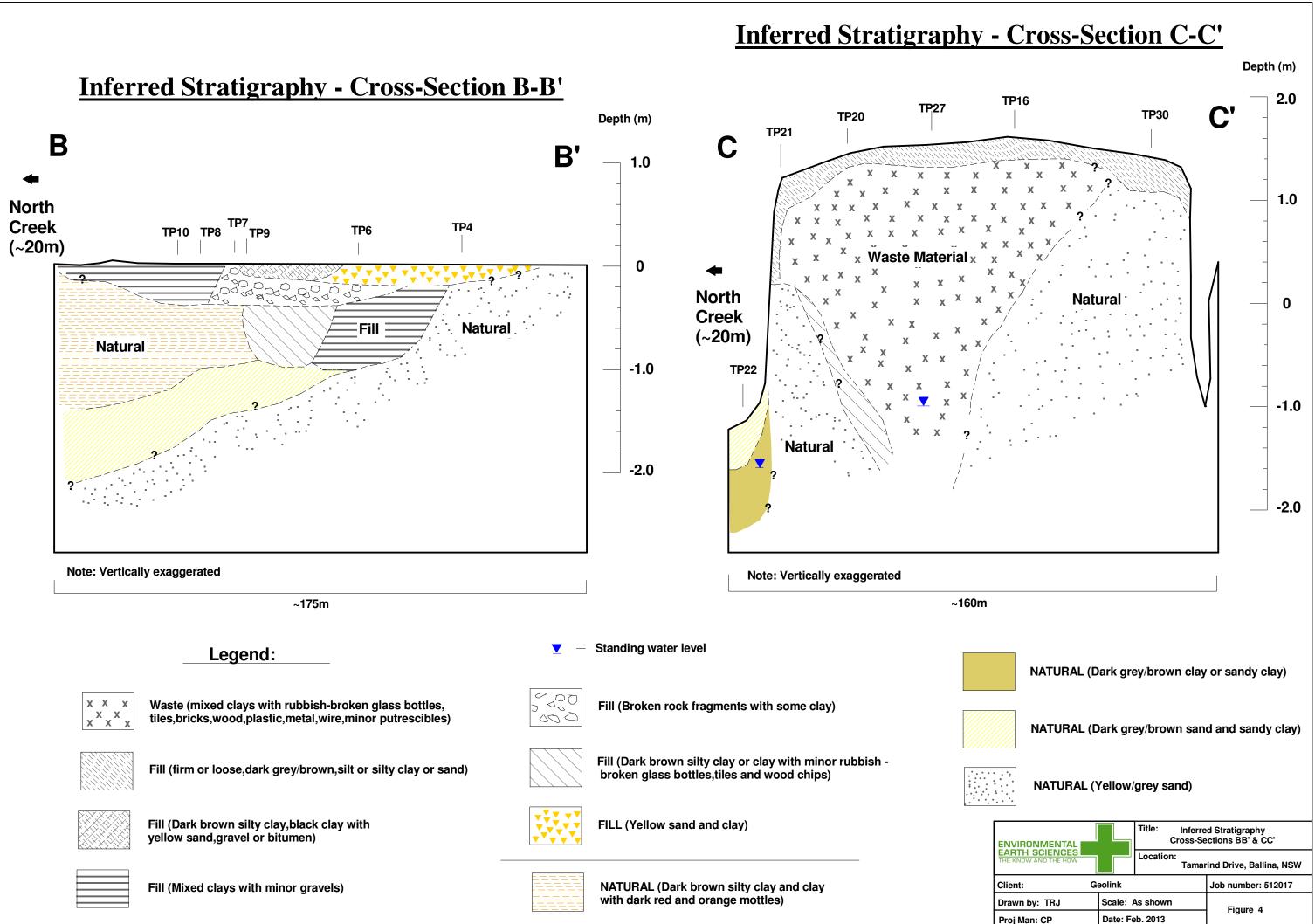

To the maximum extent permitted by law, we exclude all liability of whatever nature, whether in contract, tort or otherwise, for the acts, omissions or default, whether negligent or otherwise for any loss or damage whatsoever that may arise in any way in connection with the supply of services. Under circumstances where liability cannot be excluded, such liability is limited to the value of the purchased service.

FIGURES



Regional Locality Map - Ballina, NSW


Reference: WhereIs.com image.



ENVIRONMEN		Title:	Site Location
EARTH SCIENCES		Location:	Tamarind Drive, Ballina, NSW
Client:	Geolink		Job number: 512017
Drawn by: TRJ	Scale	: As shown	Source: See Ref.
Proj Man: CP	Date:	Jan. 2013	Figure 1

Client: G	ieolink	Job number: 512017
Drawn by: TRJ	Scale: As shown	Figure 2
Proj Man: CP	Date: Feb. 2013	rigute 2

TABLES

TABLE 10 SUMMARY OF DETECTABLE ORGANIC RESULTS

Sample	TP1 (0.0-0.1)	TP4 (0.1-0.2)	TP5 (0.1-0.2)	TP6 (0.4-0-5)	TP6 (1.1-1-2)	TP7 (0.5-0.7)	TP8 (0.2-0.3)	TP9 (0.1-0.2)	TP10 (0.4-0.5)	TP11 (0.7-0.8)	TP12 (0.2-0.3)	TP12 (0.6-0.7)	SS1 (0.0-0.1)	SS5 (0.0-0.1)	SS6 (0.0-0.1)	DEC (2006)	NSW EPA 1994 (sensitive landuse)
Туре	Natural	Fill	Fill	Fill	Natural	Natural	Fill	Fill	Natural	Fill	Fill	Fill	Fill	Fill	Fill	-	-
Polycyclic Aromatic Hydrocarbons						1	1	11			1	1	1	1	1 1		I
Naphthalene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Acenaphthylene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Acenaphthene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Fluorene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Phenanthrene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Anthracene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Fluoranthene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Pyrene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Benz(a)anthracene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Chrysene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Benzo(b)&(k)fluoranthene	-	<1	<1	-	-	-	<1	<1	-	-	<1	-	-	<1	-	-	-
Benzo(a)pyrene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	5	1
Indeno(1,2,3-cd)pyrene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Dibenzo(a,h)anthracene	-	<0.5	<0.5	-	-	-	<0.5	<0.5	-	-	<0.5	-	-	<0.5	-	-	-
Benzo(g,h,i)perylene	-	<0.5	<0.5	-	-	-	<0.5	0.63	-	-	<0.5	-	-	<0.5	-	-	-
Total PAH	-	ND	ND	-	-	-	ND	0.63	-	-	ND	-	-	ND	-	100	20
BTEX															·		
Benzene	<0.5	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	1
Toluene	<0.5	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	1.4
Ethyl Benzene	<0.5	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	3.1
m, p - Xylene	<1	-	-	<1	<1	<1	-	-	<1	<1	-	<1	<1	-	<1	-	-
o - Xylene	<0.5	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	14
Total Petroleum Hydrocarbons							-					<u>.</u>			· · · ·		
C ₆ - C ₉	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	25	<25	<25	<25	-	65
C ₁₀ - C ₁₄	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	520	<50	<50	<50	-	-
C ₁₅ - C ₂₈	<100	<100	<100	<100	<100	<100	<100	<100	660	<100	<100	1,600	<100	260	110	-	-
C ₂₉ - C ₃₆	<100	<100	<100	<100	<100	<100	<100	120	270	<100	<100	450	<100	370	400	-	-
Total C ₁₀ -C ₃₆	ND	120	930	ND	ND	2,570	ND	630	510	-	1,000						

 Notes:

 1.
 results and guidelines are in mg/kg;

 2.
 bold value indicates exceedance of guideline;

 3.
 - not tested or no guideline; and

 4.
 ND - not detected.

TABLE 11 SUMMARY OF DETECTED PAH RESULTS

Sample	TP9 (0.5-0.6)	TP13 (0.5-0.6)	TP18 (0.6-0.7)	DEC (2006)	NSW EPA 1994 (sensitive landuse)	
Туре	Fill	Fill	Fill	-	-	
Polycyclic Aromatic Hydrocarbons (USE	PA 8270 se	emi-volatile	e screen)-			
Acenaphthylene	<1	<1	<1	-	-	
Naphthalene	<1	<1	<1	-	-	
Acenaphthene	<1	<1	<1	-	-	
Fluorene	<1	<1	<1	-	-	
Phenanthrene	<1	<1	2.4	-	-	
Anthracene	<1	<1	<1	-	-	
Fluoranthene	<1	<1	2.9	-	-	
Pyrene	<1	<1	3.5	-	-	
Benz(a)anthracene	<1	<1	1.9	-	-	
Chrysene	<1	<1	2	-	-	
Benzo(b,k)fluoranthene	<2	<2	2.7	-	-	
Benzo(a)pyrene	<1	<1	2.2	5	1	
Indeno(1,2,3-cd)pyrene	<1	<1	1.2	-	-	
Dibenz(a,h)anthracene	<1	<1	<1	-	-	
Benzo(g,h,i)perylene	<1	<1	1.2	-	-	
Total PAH	ND	ND	20	100	20	

Notes:

results and guidelines are in mg/kg; **bold** value indicates exceedance of guideline; - not tested or no guideline; and ND – not detected. 1. 2.

3.

4.

TABLE 12 HEAVY METAL RESULTS (mg/kg)

Sample (m)	Туре	Cu	Pb	Zn	Cd	Cr	Ni	As	Hg
TP1 (0.5-0.6)	N	12	80	47	<0.5	8	4.5	3.5	0.08
TP3 (0.1-0.3)	F	20	19	60	<0.5	3.5	8	4.5	0.045
TP4 (0.4-0.5)	N	1.5	3	4.5	<0.5	2	1	1.5	0.005
TP6 (0.4-0.5)	F	7	18	48	<0.5	18	15	3.5	0.05
TP7 (0.5-0.7)	N	4.5	9	27	<0.5	17	8	3	0.035
TP8 (0.2-0.3)	F	15	24	37	<0.5	4	4.5	3	0.045
TP9 (0.1-0.2)	F	13	28	84	<0.5	5	10	4	0.035
TP10 (0.4-0.5)	N	23	24	68	<0.5	4.5	12	4.5	0.055
TP11 (0.7-0.8)	F	19	15	56	<0.5	3	9.5	4	0.08
TP12 (1.1-1.2)	N	4	7	47	<0.5	12	6	3	0.04
TP13 (0.5-0.6)	F	22	92	280	<0.5	15	13	5	0.13
TP14 (0.5-0.6)	F	9	12	35	<0.5	8.5	10	3	0.015
TP15 (0.2-0.3)	F	34	47	57	<0.5	11	8.5	3.5	0.06
TP17 0.3-0.4)	F	21	47	240	<0.5	14	15	5.5	0.085
TP19 (0.2-0.3)	F	10	24	92	<0.5	17	14	4.5	0.03
TP19 (0.6-0.7)	W	19	90	190	<0.5	14	14	6.5	0.085
TP19 (2.0-2.1)	N	7	35	34	<0.5	10	6.5	3	0.03
TP21 (0.5-0.6)	W	68	260	620	1.5	18	2	6	0.14
TP22 (0.4-0.5)	N	4	12	19	<0.5	10	7	3	0.04
TP26 (1.1-1.2)	W	80	350	910	2.5	13	14	7	0.12
TP27 (1.5-1.6)	W	60	220	1,760	2.5	17	23	8	0.22
TP28 (0.9-1.0)	W	4	14	28	<0.5	10	7.5	6	0.35
TP28 (1.1-1.2)	N	1	1.5	3	<0.5	1	2	0.5	0.005
TP29 (2.0-2.1)	F	90	460	880	3.5	28	3	6.5	0.12
TP30 (0.4-0.5)	N	12	52	92	0.5	7	7.5	5	0.05
TP31 (0.4-0.5)	N	2.5	11	23	<0.5	7	6.5	3	0.01
TP32 (0.6-0.7)	N	2	6	16	<0.5	5.5	4.5	2.5	0.01
SS2 (0.00.1)	F	32	17	110	<0.5	6.5	5.5	4	0.045
SS4 (0.0-0.1)	F	30	30	390	0.5	12	11	6.5	0.04
SS5 (0.00.1)	F	23	100	250	0.5	13	11	4.5	0.03
SS6 (0.0-0.1)	F	100	270	1960	2.5	26	17	7.5	0.24
DEC (2006)	-	5,000	1,500	35,000	100	500	3,000	500	75

Note: N = Natural, F= Fill, W= Waste.

APPENDIX A TESTPIT LOGS

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC)G:	TP1	LOGGED BY:
EASTING										A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater ▼ Water Strike			SAN	/IPL	ES		PAG	GE #: 1/1
(si	Undisturbed	✓ Standing Water Level	g							
letre	Moisture						(Level		
	M=Moist D=Dry S=Saturated		H H		nre		ppr	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Hq	PID (ppm)	Water	COMMENTS	
			0	F	2	٩	Δ.	>		
0-	Natural: Topsoil - dark brow	n gravelly, SILTY CLAY.			м	7	0.2		No odour throughout	
						[′]	0.2		Septic tank nearby	
.2	Natural: Loose, yellow SANI) with some dark grev clay								
		o with some dank grey day.								
.4-										
-					М	5	0.1			
.6-	Natural: Loose, dark brown	SAND.								
.8-										
				—	М	5				
1.2	End of hole: Target depth @	1.2 motros								
	End of hole. Target depth @	1.2 metres.								
-										
1.4										
-										
1.6										
1.8										
2-										
									ENVIRONMENTAL	
									THE KNOW AND THE HOW	-

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP2	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	ИРL	ES		PA	GE #: 1/1
	Disturbed	Vater Strike	0							J∟ #. 1/1
Depth (metres)	Undisturbed	_ ∑ Standing Water Level	GRAPHIC LOG					-		
(me	Moisture M=Moist D=Dry S=Saturated		₽		e		(m	-eve		
pth			API -	e	istu		PID (ppm)	Water Level	COMMENTS	
De	STRATIGRAPHY		GR GR	Type	Moisture	님	PIC	Wa		
0-					1					
-	Fill: Gravel at surface; brow gravelly silty clay (70%, <5c	n CLAY and dark grey, m): metal pipe and roots								
	present.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							No odour throughout	
.2					м	7	0			
			$\left \right\rangle$							
.4-										
.4 -	Natural: Loose, white SAND	with fine red gravel and								
	some roots.									
.6										
-										
.8–										
-										
-					м	6.5	0.1			
1_						0.0	0.1			
-										
1.2	End of hole: Target depth @	1.2 metres.	1.1.1.1							
	gg.									
1.4										
1.4										
1.6										
-										
1.8-										
2-										
	1									
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC	G:	TP3	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI		DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			<u>2</u> ^ N	/IPL	EQ			
	Disturbed	_ Water Strike							PA	GE #: 1/1
(s	Undisturbed	Standing Water Level	LOG							
letre	Moisture	— °	C L C				(vel		
u) u	M=Moist D=Dry S=Saturated		H		nre		ppr	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC	Type	Moisture	Hd	PID (ppm)	Water Level	COMMENTS	
			0	F	2	٩	Δ.	>		
0-	Fill: Dark grey, sandy, silty (GRAVEL (shale, 70%,	\mathbb{K}							
	<5 cm) with minor clay		$\left \right\rangle$							
.2-					М	7	0		No odour	
			$\left \right\rangle$							
.4-			$\left \right\rangle$							
· · · ·	Natural: Loose, yellow coars gravel.	se SAND with occasional								
	gravei.									
.6-										
					N/	6.5	0.3		No odour	
.8						0.5	0.5			
1.2	Natural: Dark brown/orange		7							
	Natural. Dark brown/orange	CLAT.								
			\mathbf{V}						Minor H2S odour	
1.4					m	5	0.1			
]	End of holes Target death of	1 E motros	Y/			Ľ				
]	End of hole: Target depth @	1.5 meues.								
1.6										
1.8										
2-										
									ENVIRONMENTAL	
									THE KNOW AND THE HOW	_

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC	G:	TP4	LOGGED BY:
EASTING	3: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 24/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 24/1/2013								C. Pitman
	Sample Disturbed	Groundwater ▼ Water Strike			SAN	/IPLI	ES		PA	GE #: 1/1
Depth (metres)	Moisture M=Moist D=Dry S=Saturated	_ Standing Water Level	GRAPHIC LOG	Ð	Moisture		PID (ppm)	Water Level	COMMENTS	
Dep	STRATIGRAPHY		GR,	Type	Moi	ЬН	DIG	Wat		
.2	HARDSTAND (~5 cm) Fill: Hard, dark yellow CLAY Natural: Yellow/orange SAN gravel (10%, <2 cm).				D	7	0		No odour throughout.	
.4					М	6.5	0			
.8										
1										
1.2	End of hole: 1.2 metres in n	atural material			м/w	5.5	0			
1.4										
1.6										
1.8										
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LO	G:	TP5	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 24/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 24/1/2013								C. Pitman
			1							•
	Sample	Groundwater			SAN	/PLI	ES		ΡΔ	GE #: 1/1
	Disturbed	Vater Strike	0							JL #. 1/1
tres	Undisturbed	_ ∑ Standing Water Level	Ď					-		
, Ue	Moisture M=Moist D=Dry S=Saturated		₽		e		б Ш	-eve		
Depth (metres)			GRAPHIC LOG	e	stur		dd)	Water Level	COMMENTS	
Der	STRATIGRAPHY		GR	Type	Moisture	Нd	PID (ppm)	Wa		
0-								_		
	Fill: Loose, dark brown, slity sub-rounded fine gravels (20	CLAY with angular to 3% <3 cm): some rootlets	\mathbb{N}							
			\searrow						No odour throughout.	
					м	4.5	0			
.2-			\mathbb{K}							
	Natural: Loose, yellow/orang	ge/white SAND with minor	××							
.4-	rounded gravel (5%, <3 cm)									
.4										
.6-										
.8–										
					м	6.5	0			
1-										
	End of hole: 1.0 metre in na	tural material.								
1.2										
1.4										
1.6										
1.8-										
1										
2-										
									ERVIRONMENTAL EARTH SCIENCES	

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP6	LOGGED BY:
EASTING	B: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPL	ES			-
	Disturbed	▼ Water Strike							PAG	GE #: 1/1
es)	Undisturbed	_ Standing Water Level	0 0							
hetr	Moisture		C				(svel		
u) u	M=Moist D=Dry S=Saturated		H		iure		(mdd)	Ľ.		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Нd	PID (Water Level	COMMENTS	
				-	2	٩	ш	>		
0-	HARDSTAND (~5 cm)		\bigotimes							
	Fill: Firm, yellow/orange SA	ND and CLAY.	\otimes		D				No odour.	
			$\left \right\rangle$							
.2-	Fill: Grey, weathered, hard r blue staining.	ock with some black and	\geq							
	blue stairing.		$\langle \rangle \rangle$							
	Fill: Stiff, dark brown/black s	ticky CLAX with como	\bigotimes		D	6.5	0		Slight sweet chemical odour.	
	mixed orange/brown/yellow	clay.	\times							
.4-			\searrow							
			\bigotimes		М	5	0.5		Slight sweet manure odour.	
			\bigotimes							
-6.			$\left \right\rangle$							
			$\left \right\rangle$							
			$\left \right\rangle$							
			\bigotimes							
.8-			\bigotimes							
			\bigotimes							
			\triangleright							
			\bigotimes							
	Natural: Loose, grey/black S	SAND.								
				_					Slight H2S odour.	
					м	7	0			
1.2	End of hole: 1.2 metres in r	atural matorial								
	End of hole. 1.2 metres in t	ialural malenal.								
1.4										
1.6										
1.8-										
2-										
									EARTH SCIENCES	

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP7	LOGGED BY:
EASTING	B: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	ИРL	ES		PA	GE #: 1/1
<i>(</i>	Disturbed	▼ Water Strike	υ							02 // 171
stres	Moisture	_ Standing Water Level	2					e		
Ű.	M=Moist D=Dry S=Saturated		l ⊟		ē		(mq	Le		
Depth (metres)			GRAPHIC LOG	be	Moisture		PID (ppm)	Water Level	COMMENTS	
De	STRATIGRAPHY		ß	Type	ž	Нd	Ы	Ň		
0-	Fill: Gravel.		KX							
	Fill: Grey, weathered rock a	nd hard dry orange/brown	${\leftarrow}$							
	CLAY with gravel.	na nara, ary orange/brown							No odour.	
.2-			$\left \right\rangle$		D	6.5	0			
			$\left \right\rangle$			0.0	Ŭ			
			\mathbb{K}							
.4-	Natural: Stiff, brown CLAY	with dark orange mottles	\downarrow							
	(20%).									
					м	7	0		No odour Field blind duplicate FD1 collected	here
-6.						[′]	0			
.8-										
1-			\mathbb{Z}							
-										
1.2-										
1.4	<u> </u>		V/							
]	End of hole: 1.4 metres in n	atural material.								
1.6										
1.8										
2										
									ENVIRONMENTAL	
									THE KNOW AND THE HOW	_

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC	G:	TP8	LOGGED BY:
EASTING	6: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ON: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPLI	ES		DA	GE #: 1/1
	Disturbed	Vater Strike	0							GE #. 1/1
tres	Undisturbed	_ ∑ Standing Water Level	Ď					-		
(me	Moisture M=Moist D=Dry S=Saturated		ЧС		e		(mc	Lev		
Depth (metres)			GRAPHIC LOG	e	Moisture		PID (ppm)	Water Level	COMMENTS	
De	STRATIGRAPHY		GF	Type	l₹	Нd	ЫС	Wa		
0-	Fill, Stiff and/or firm arong	arou/rod CILTY CLAY with								
-	Fill: Stiff and/or firm, orange weathered angular gravel (in	ronstone, shale; 20%).	\searrow							
			\mathbb{X}						No odour throughout.	
			\otimes							
.2-			$\left \right\rangle$		м	5	0			
			\searrow		IVI	5	0			
			\mathbb{X}							
.4	Noturol: Ctiff otiolas, deals be		\mathbf{k}							
-	Natural: Stiff, sticky, dark br mottles.	own SILTY CLAY with red								
			\mathbb{N}							
			K							
.6-										
-					м	5	0			
			\mathbb{N}		111	ľ	0			
.8-			K							
1-	Natural: Loose, grey/brown/	orange, fine grained								
-	SAND.									
-										
1.2										
					w	6.5	0			
1.4-										
-										
	End of hole: 1.5 metres in n	atural material.								
1.6										
1.8-										
2-										
									THE KNOW AND THE HOW	

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP9	LOGGED BY:
EASTING	THING: - DATE STARTED: 22/1/2013									A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	ЛРL	ES		ΡΔ	GE #: 1/1
	Disturbed	▼ Water Strike	0							02 #. 171
tres	Undisturbed	_ Standing Water Level	Ρ					-		
, me	Moisture M=Moist D=Dry S=Saturated		₽		e		(mdd)	evel 1		
Depth (metres)	-		GRAPHIC LOG	e	stur		dd)	Water Level	COMMENTS	
Dep	STRATIGRAPHY		GR	Type	Moisture	님	PID	Wa		
0-	Fill: Dark brown SILTY CLA	Y with hitumen								
		r with bitumen.								
	Fill: Grey weathered rock wi	th minor silt and silty clay.			D	8	0		No odour Field blind duplicate FD2 collected	here
.2			$\left \right\rangle$			°	0			
-			\mathbb{K}							
.4	Fill: Dark brown CLAX with	orange mottles and some	\mathbb{K}							
	Fill: Dark brown CLAY with rubbish (broken glass, roots	s, minor gravels [<1%, <1								
-	cm] fragments of tiles, pers	pex plastic, fake teeth).							No odour.	
					M	5	0.3			
.6-										
			$\left \right\rangle$							
.8-										
	Natural: Loose to firm, dark	arev/brown SAND with	×Χ							
	minor clay.	5								
1-										
1.2									No odour.	
					M/W	6.5	0			
	End of hole: 1.3 metres in n	atural material.								
1.4										
1.6										
1.8-										
2-										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC	G:	TP10	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	лрі	= 9			
	Disturbed	_ Water Strike							PA	GE #: 1/1
(s	Undisturbed	Standing Water Level	g							
etre	Moisture	<u> </u>						vel		
L L	M=Moist D=Dry S=Saturated		HE I		nre		mdc	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	_	PID (ppm)	Water Level	COMMENTS	
			G	ŕ	Σ	Чd	₫	\$		
0-	Fill: Black/dark brown/dark g	grey CLAY.	KX							
-									No odour.	
=			$\left \right\rangle$		D	6	0			
.2-						ľ	Ŭ			
	Natural: Dark grey CLAY wi brown clay.	th gravel and minor mixed								
	brown day.									
.4-	Natural: Dark grey CLAY wi	th minor arev sand.								
	······································				M/W	7	0.2		Strong hydrocarbon odour.	
.6										
.0										
-										
.8-					мw	5	0.2		No odour.	
-										
-										
-										
-										
1.2										
	Natural: Dark grey SAND.									
-										
=										
1.4									No odour.	
-					W	6.5	0			
=	End of hole: 1.5 metres in n	atural material.								
1.6										
=										
1.8-										
2-										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP11	LOGGED BY:
EASTIN	DRTHING: - DATE STARTED: 22/1/201									A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
		•	1							
	Sample	Groundwater			SAN	1PL	ES		PA	GE #: 1/1
â	Disturbed Undisturbed	▼ Water Strike	U							
etres	Moisture	_ Standing Water Level	2					e		
u€	M=Moist D=Dry S=Saturated		HIC		e		(mdd)	Le		
Depth (metres)			GRAPHIC LOG	Type	Moisture		d) D	Water Level	COMMENTS	
ă	STRATIGRAPHY		ß	Ty	M	Нd	DID	Ň		
0-	Fill: Dark brown SILTY CLA	Y with gravel	$\mathbb{K}\mathbb{X}$							
-		r with gravel.	\mathbb{X}							
			\otimes		D				No odour.	
.2			$\left \right\rangle$							
.2	Fill: Rock fragments, angul with grey clay.	ar (70%, 1-10 cm; shale)								
-	with grey clay.									
-										
.4-										
-										
			\langle / \rangle							
.6										
	Natural: Soft, dark grey SA									
					M/D	7	0		No odour.	
.8-										
1-										
1.2										
1.2					w	7.5	0		No odour.	
-	Find of holes 4.0 motors in a									
	End of hole: 1.3 metres in n	atural material.								
1.4										
-										
1.6										
1.8-										
3										
2-										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	Ľ)G:	TP12	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPL	ES			
	Disturbed	▼ Water Strike								GE #: 1/1
tres)	Undisturbed	_	۲ ۲ ۲					-		
(me	Moisture M=Moist D=Dry S=Saturated		₽		e		(m	Level		
Depth (metres)	-		GRAPHIC LOG	e	Moisture		PID (ppm)	Water I	COMMENTS	
De	STRATIGRAPHY		64	Type	β	ਮੁ	ЫП	Wa		
0-	Fill: Dark brown, black CLA	/								
	Thi. Dark brown, black CEA									
	FILL: Loose, yellow SAND.		\mathbb{K}							
.2-										
	Fill: MIxed black/red/brown/ gravels of black rock, tiles, g	prange clay with angular			м	5	0.1		No odour.	
	gravele el black l'eek, alee, g									
.4-										
.6-										
					м	6	1.1		Stong hydrocarbon odour associate	ed with staining
	Green staining									
.8-										
-0.										
-										
			$\left \right\rangle$							
1-	Natural: Dark grey/brown Cl	AY with some sand.								
-										
					м	6.5	0		No odour.	
1.2	Find of holes 4.0 motions in a									
	End of hole: 1.2 metres in n	alurai malenai.								
1.4										
1.6										
1.8										
-										
2										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC)G:	TP13	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			~ ^ ^		-			
	Disturbed	Water Strike			SAN	IPL	-5		PA	GE #: 1/1
s)	Undisturbed	✓ Water ethic ✓ Standing Water Level	g							
etre	Moisture						(vel		
L (L	M=Moist D=Dry S=Saturated		HIC		nre		(mdd)	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture		PID (I	Water Level	COMMENTS	
			0	É	Σ	Нd	٩	5		
0-	Fill: Hard, mixed yellow/orar	ge CLAY with gravel	\mathbb{K}							
-	(shale/ white rock).		\otimes		D				No odour.	
			$\left \right\rangle$							
.2		V with broken and intest	\bigotimes							
	Fill: Dark brown/orange CLA glass bottles.	AY with broken and intact	\mathbb{K}							
			$\left \right\rangle$							
.4-			\mathbb{X}							
-			\otimes							
			$\left \right\rangle$		м	5	6		No odour.	
.6			$\left \right\rangle$							
			\mathbb{K}							
			$\left \right\rangle$							
.8-			\searrow							
.0			$\left \right\rangle$							
-			\otimes							
-			$\left \right\rangle$							
1-	Natural: Dark brown/red CL	AY.	\nearrow							
-			\langle / \rangle							
					М	5.5	0		No odour.	
1.2-										
	End of hole: 1.3 metres in n	atural material.	/ /							
1.4										
=										
1.6										
1.8-										
2-										
									ENVIRONMENTAL	
									THE KNOW AND THE HOW	=

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP14	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	ЛРL	ES			
	Disturbed	▼ Water Strike							PA	GE #: 1/1
res)	Undisturbed		Ŏ					_		
met	Moisture		l L L		۵		ε	eve.		
Depth (metres)	M=Moist D=Dry S=Saturated		GRAPHIC LOG	e	stur		PID (ppm)	Water Level	COMMENTS	
Dep	STRATIGRAPHY		GR	Type	Moisture	Нd	БП	Wa		
0-	Fill: "Metal dust" (fine black	aravels) followed by								
	Mixed yellow sand with blac 50%) and minor organics (w	k gravel (basait, <0.5 cm, vood chips).								
.2-										
			$\left \right\rangle$							
			$\left \right\rangle$							
.4-										
			$\left \right\rangle$							
			$\left \right\rangle$		М	6.5	0		No odour.	
.6-										
			$\left \right\rangle$							
.8-										
-										
			$\left \right\rangle$							
1-			$\left \right\rangle$							
'-										
			$\left \right\rangle$							
-			$\left \right\rangle$							
1.2	Natural: Dark grey SAND.									
					W	6.5	0		No odour.	
	End of hole: 1.3 metres in n	atural material.								
1.4										
1.6										
1.8										
2-										
									THE KNOW AND THE HOW	-

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC	G:	TP15	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI		DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Camala	Oreventureter								
	Sample	Groundwater			SAN	1PL	ES		PAG	GE #: 1/1
<i>(</i> ()	Undisturbed	▼ Water Strike	U							
etre	Moisture	Standing Water Level	LO LO					ē		
ů,	M=Moist D=Dry S=Saturated		HIC		e		(mdd)	Le		
Depth (metres)			GRAPHIC LOG	Type	Moisture		d) (Water Level	COMMENTS	
ă	STRATIGRAPHY		Ū	Тy	Ĕ	Hd	PID	Ŝ		
0-	Fill: Loose, dark brown, SIL	TY CLAY (topsoil).	$\mathbb{K}\mathbb{X}$							
-	· ···· _ · · · · · · · · · · · · · · ·		\sim						Grassed ground surface	
			\bigotimes		М					
.2			\times							
.2	Fill: Stiff, mixed dark grey/bl	ack/dark brown CLAY.	\geq		м	7	0		No odour.	
-			\bigotimes						Field blind duplicate FD3 collected	here.
-			\bigotimes							
.4-			$\left \right\rangle$							
-			$\left \right\rangle$							
			\bigotimes							
.6			\times							
			\searrow							
-			\bigotimes							
-			\bigotimes							
.8-			\bigotimes							
-			\searrow							
			$\left \right\rangle$							
1-			\bigotimes							
' -	Natural: Loose, yellow/dark	grey SAND.								
-										
-					m	5.5	0		No odour.	
1.2										
-										
-	End of hole: 1.3 metres in n	atural material.								
1.4										
-										
1.6-										
-										
1.8-										
2-										
									ENVIRONMENTAL	
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		ΤE	ST	PIT	ĽC)G:	TP16	LOGGED BY:
EASTING								A.Plioplis		
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater			C / I	ЛРL	E0			
	Disturbed	_ Water Strike							PA	GE #: 1/1
(se	Undisturbed	 Standing Water Level	g							
Jetre	Moisture		CL				(c	Level		
th (n	M=Moist D=Dry S=Saturated		HH		ture		(ppr	er Le	COMMENTS	
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Нd	PID (ppm)	Water		
0-										
-	Fill: Hard/loose, light brown some weathered shale.	SILT with rootlets and								
					D	6.5	0		No odour throughout	
.2	Fill: WASTE: Loose, mixed	grey/brown silt, clay and	$\left \right\rangle$							
	sand with broken glass bott minor copper sulfate, plastic	es and rock tragments,								
.4-										
-										
.6										
.8-										
-0.										
-			$\left \right\rangle$							
1-	Natural: Loose, yellow/light	brown SAND.								
					м	8	0			
							0			
1.2										
1.4										
1.6										
1.8-										
					m	8	0			
2-	End of hole: 2 metres in nat	ural material.			L					
									EARTH SCIENCES	

LOCATIO	N: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STF	ΡIΤ	LC	G:	TP17	LOGGED BY:
EASTING:	-	DRILL TYPE: Backhoe								A.Plioplis
NORTHIN	G: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVATIO	DN: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample Disturbed	Groundwater ▲ Water Strike			SAN	1PLI	ES		PA	GE #: 1/1
	Undisturbed Moisture M=Moist D=Dry S=Saturated STRATIGRAPHY	_ Standing Water Level	GRAPHIC LOG	Type	Moisture	рН	PID (ppm)	Water Level	COMMENTS	
.2 .2 .4 .6 .8 .8 .1	Fill: Dark brown SILTY CLA				D/M	6.5	0.1		Grassed surface No odour.	
	Natural: Firm, yellow/brown				М	7	0.1		No odour.	
1.6	End of hole: 1.4 metres in n	atural material.								
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC	G:	TP18	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater ▼ Water Strike			SAN	/IPLI	ES		PA	.GE #: 1/1
etres)	Undisturbed Moisture	Standing Water Level	C LOG				(vel		
Depth (metres)	M=Moist D=Dry S=Saturated		GRAPHIC LOG	Type	Moisture	Hd	PID (ppm)	Water Level	COMMENTS	
0-					~	<u>a</u>		_		
	Fill: Firm, mixed dark brown with roots, gravels, cobbles,				D/M	5	0.1		No odour throughout.	
.2-	Fill: Firm, dark brown SILTY fragments of glass bottles a	CLAY with occasional nd tiles.								
.4										
.6					м	5.5	0			
.8-										
1										
1.2										
1.4										
1.6	Natural: Dark grey mottled t		\bigotimes							
	natura. Dan grey motteu t	NOWIL ON WELL OLAT.			М	7.5	0			
1.8	End of hole: 1.4 metres in n	atural material.								
2-										
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP19	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013	CLIENT: Geolink			Geolink	APPROVED:			
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
		•							I	
	Sample	Groundwater			SAN	ИРL	ES			
	Disturbed	▼ Water Strike								GE #: 1/2
'es)	Undisturbed	_ Standing Water Level	Ö							
neti	Moisture		0				Ē	eve		
ih (r	M=Moist D=Dry S=Saturated		H		ture		ppr	1	COMMENTS	
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	님	PID (ppm)	Water Level		
			U	-	2	0	ш	-		
0-	Fill: Grey gravelly SILT (road	dbase)	\times		D					
	Fill: Dark brown/grey SILTY	CLAY.	\mathbb{X}						No odour throughout.	
=			$\left \right\rangle$							
.2-			\searrow							
			$\left \right\rangle$		D	7	0			
_			\mathbb{X}							
	Fill: WASTE - Mixed grey/or broken bricks, glass, wood	ange/brown silty clay with	\otimes							
.4-	broken bricks, glass, wood									
-			$\left \right\rangle$							
-			\searrow							
			\searrow							
.6			\times							
=			\times		м	7	0.1			
			\mathbb{K}							
=		\otimes								
.8										
-			$\left \right\rangle$							
			\searrow							
			$\left \right\rangle$							
1-			\times							
-			\mathbb{K}							
			\otimes							
1.2			\mathbb{X}							
-			\searrow							
			$\left \right\rangle$							
1.4			\times							
1.4			\times							
]			(
	Fill: Dark brown SILTY CLA									
1.6	glass, wood and tiles and so	ome black clay.								
1.8-										
	Natural: Dark grey SANDY (JLAY								
4										
							1			
2-										
									EARTH SCIENCES	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TESTPIT LO	G: TP19	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe				A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CLIENT:	Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013				C. Pitman
	Sample	Groundwater		SAMPLES		•
	Disturbed	▼ Water Strike			_	PAGE #: 2/2
(se	Undisturbed	_ Standing Water Level	90			
netro	Moisture		CL		svel	
u) (i	M=Moist D=Dry S=Saturated		HH	(ppn	호 호 COMME	NTS
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type Moisture PHD (ppm)	Mater Level	NI S
2-						
				M 7.5 0		
2.2						
	End of hole: 2.2 metres in n	atural material.				
2.4						
2.6						
2.8						
3-						
3.2						
0.2						
-						
3.4						
]						
3.6						
3.8						
4-						
					ENVIRONMENTAL EARTH SCIENCES	
					THE KNOW AND THE HOW	

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LO	G:	TP20	LOGGED BY:
EASTING	3: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
es)	Sample Disturbed Undisturbed	Groundwater ▼ Water Strike ▽ Standing Water Level	OG		SAN	/IPLI	ES		PA	GE #: 1/2
Depth (metres)	Moisture M=Moist D=Dry S=Saturated STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	рН	PID (ppm)	Water Level	COMMENTS	
0-	Fill: Grey silty gravel (roadba	ase).			D					
.2 .4 .4 .6 .8 1.2 1.2 1.4 1.6	Fill: WASTE - Mixed brown/ rubbish consisting of broker				D/M				No odour.	
2-										
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP20	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPL	ES		P	AGE #: 2/2
	Disturbed Undisturbed	▼ Water Strike	U							(OL #: 2/2
Depth (metres)	Moisture	_ Standing Water Level	L GRAPHIC LOG					e		
u≝	M=Moist D=Dry S=Saturated		HIC		e		(md	Lev		
epth			RAF	Type	Moisture		PID (ppm)	Water Level	COMMENTS	
ă	STRATIGRAPHY		ß	Ту	ž	Нd	Ы	Ŝ		
2-			$\mathbb{K}\mathbb{X}$							
					м	7	0		No odour.	
2.2										
	Fill: Dark brown clayey SAN	D with some rubbish.								
-	End of hole: 2.2 motros in fi	Il/waata (targat danth)								
	End of hole: 2.3 metres in fi	in waste (target depth).								
2.4										
2.6										
2.8										
3-										
3.2										
3.2										
-										
3.4										
3.6-										
3.8-										
4-										
	1									
									EARTH SCIENCES	

NORTHING: - DATE STARTED: 23/1/2013 CLIENT: Geolink APPROVE	LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	Ľ)G:	TP21	LOGGED BY:
LEEVATION: DATE FNUSHER: 221/2013 C. Plant Sample Groundwater Varian Strike PAGE #: 1/2 Moleture Variantice Variantice 000000000000000000000000000000000000			DRILL TYPE: Backhoe								A.Plioplis
Sample Groundwater SAMPLES PAGE #: 1/: Undestured Water Strike Standing Water Level 00 gt g					CL	IEN	IT:			Geolink	APPROVED:
Image: Second	ELEVATI	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
Image: Securited Molecular Molecular Strike Image: Strike Molecular Molecula		Sample	Groundwater	SAMPLES							
0 Fill: Firm, black SILT. .2 Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor .4 .6 .8 .1 Natural: Loose, yellow/brown SAND. Natural: Loose, yellow/brown SAND. Natural: Stiff, sticky, dark greyblack CLAY.			▼ Water Strike						PA	GE #: 1/1	
0 Fill: Firm, black SILT. .2 Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor .4 .6 .8 .1 Natural: Loose, yellow/brown SAND. Natural: Loose, yellow/brown SAND. Natural: Stiff, sticky, dark greyblack CLAY.	res)		_ Standing Water Level						-		
0 Fill: Firm, black SILT. .2 Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor .4 .6 .8 .1 Natural: Loose, yellow/brown SAND. Natural: Loose, yellow/brown SAND. Natural: Stiff, sticky, dark greyblack CLAY.	, met			l ₽		e		(n	-eve		
0 Fill: Firm, black SILT. .2 Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor .4 .6 .8 .1 Natural: Loose, yellow/brown SAND. Natural: Loose, yellow/brown SAND. Natural: Stiff, sticky, dark greyblack CLAY.	pth	-		₹ ZPF	ЭС	istur		dd) (ter I	COMMENTS	
1 Foil: Firm, black SIL1. Poot zone Fil: WASTE - Firm to stiff SILTY CLAY with minor Fil: WASTE - Firm to stiff SILTY CLAY with minor Image: Stiff plastic and glass). Image: Stiff plastic and glass and glass. Image: Stiff plastic and glass a	De	STRATIGRAPHY		U U U U	Тур	Mo	Нd	PIC	Wa		
.2 Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor .4 .4 .6 .8 .9 .8 .9 .8 .9	0-	Fill: Firm, black SILT.		KX							
Root zone Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .4 Fill: WASTE - Firm to stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .6 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY CLAY with minor rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY clay with minor rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY clay with rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY clay with rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY clay with rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY clay with rubbish (plastic and glass). .7 Image: Constant of the stiff SILTY											
Root zone Fill: WASTE - Firm to stiff SILTY CLAY with minor nubbish (plastic and glass). .4 Fill: WASTE - Firm to stiff SILTY CLAY with minor nubbish (plastic and glass). .6 DM 7.5 0.2 .8 DM 7.5 0.2 .9 Natural: Loose, yellow/brown SAND. 1.2 W 7.5 0.2 Natural: Loose, yellow/brown SAND. 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark greyblack CLAY. 1.6 End of hole: 1.6 metres in natural material.											
Fill: WASTE - Firm to stiff SILTY CLAY with minor nubbish (plastic and glass). D/M 7.5 0.2 No odour. .6 .6 .6 .7.5 0.2 No odour. .8 .8 .9 .9 .9 .9 .8 .9 .9 .9 .9 .9 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .1.2 .9 .9 .9 .9 .9 .1.4 Saturated zone (1.4-1.5 m) .9 .9 .9 .9 .1.6 End of hole: 1.6 metres in natural material. .9 .9 .9 .9 .9 .1.8 .1.8 .1.8 .1.8 .1.8 .1.8 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 .1.1.1 <t< td=""><td>.2</td><td></td><td></td><td></td><td>—</td><td>D</td><td></td><td></td><td></td><td>No odour.</td><td></td></t<>	.2				—	D				No odour.	
.4 rubbish (plastic and glass). .6 .6 .8 .7.5 1 Natural: Loose, yellow/brown SAND. 1.2 .8 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. .8 1.6 End of hole: 1.6 metres in natural material.		Root zone									
.4 .6 .7.5 0.2 No odour. .8 .8 .1 .1.4 Natural: Loose, yellow/brown SAND.			LTY CLAY with minor								
.6 .8 1 Natural: Loose, yellow/brown SAND. 1.2 .8 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 1.6 End of hole: 1.6 metres in natural material. 1.8	.4-	ruddish (plastic and glass).									
.6 .8 1 Natural: Loose, yellow/brown SAND. 1.2 .8 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 1.6 End of hole: 1.6 metres in natural material. 1.8											
.6 .8 1 Natural: Loose, yellow/brown SAND. 1.2 .8 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 1.6 End of hole: 1.6 metres in natural material. 1.8											
.8 .8 1 Natural: Loose, yellow/brown SAND. 1.2 .4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material.	6					D/M	7.5	0.2		No odour.	
1 Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. 1.6 End of hole: 1.6 metres in natural material.											
1 Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. 1.6 End of hole: 1.6 metres in natural material.											
1 Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. 1.6 End of hole: 1.6 metres in natural material.											
Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 8 1.6 End of hole: 1.6 metres in natural material. 1.8	-8.										
Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 8 1.6 End of hole: 1.6 metres in natural material. 1.8											
Natural: Loose, yellow/brown SAND. 1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 8 1.6 End of hole: 1.6 metres in natural material. 1.8											
1.2 1.4 Saturated zone (1.4-1.5 m) Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. 1.8		Natural: Loose, vellow/brow	n SAND.								
1.4 Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. Image: Stiff stick sti											
1.4 Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material.											
Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. 1.8 1.8	1.2										
Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. 1.8 1.8											
Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. 1.8 1.8											
Saturated zone (1.4-1.5 m) W 7.5 0.2 Chemical odour. Natural: Stiff, sticky, dark grey/black CLAY. M 8 0.3 No odour. 1.6 End of hole: 1.6 metres in natural material. 1.8 1.8	1.4										
1.6 End of hole: 1.6 metres in natural material. 1.8		Saturated zone (1.4-1.5 m)				w	7.5	0.2		Chemical odour.	
1.6 End of hole: 1.6 metres in natural material. 1.8		Natural: Stiff, sticky, dark gro	ey/black CLAY.	<u> </u>		N.4		0.2		No adour	
1.8	1.6		- (Ø	0.3			
		End of hole: 1.6 metres in h	atural material.								
2-											
2-											
ENTH SCIENCES										EARTH SCIENCES	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	Ľ)G:	TP22	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater ▲ Water Strike		SAM		/IPL	ES		PA	GE #: 1/1
tres)		Standing Water Level	LOG					<u>_</u>		
Depth (metres)	Moisture M=Moist D=Dry S=Saturated		GRAPHIC LOG	Type	Moisture	Hq	PID (ppm)	Water Level	COMMENTS	
0-	Fill: Loose/firm, brown, fine	grained SAND with minor	KX.	•		-				
	silt and roots.								Grassed surface No odour.	
.2										
.4	Natural: Dark grey CLAY (sa	aturated layer)	\mathbf{Y}		s	6	0		No odour.	
.6										
.8										
.0 -										
1-										
1.2										
					s	7	0		Slight H2S.	
1.4	End of hole: 1.4 metres in n	atural material.			•	•	-	•		
1.6										
1.8-										
2-										

EXETTING · DIRLETTIRE Exercise APRICAL VORTHING · DATE STATED 2510013 CLIENT: Geolink APRICAL Image: Control of the State Stat	LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LO	G:	TP23	LOGGED BY:
ILEYATION DATE PRISEND 23/12013 C. Parent Image: Contract of the second se	EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
Sample Groundwater Water Sike SAMPLES Undaturbad Standing Water Level Motive Standing Water Level STRATIGRAPHY groundwater Stratics Groundwater Matural: Brown SILTY CLAY (topsoil) Natural: Brown SILTY CLAY (topsoil) Natural: Brown SILTY CLAY (topsoil) Natural: Loose, yellow/brown/orange SAND with (odds, and some hard, dark grey clay inclusions 1 <td>NORTHI</td> <td>NG: -</td> <td>DATE STARTED: 23/1/2013</td> <td></td> <td>CL</td> <td>IEN</td> <td>IT:</td> <td></td> <td></td> <td>Geolink</td> <td>APPROVED:</td>	NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
PAGE #: 1/1 PAGE #: 1/1 PAGE #: 1	ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
PAGE #: 1/1 PAGE #: 1/1 PAGE #: 1				1	1						
Image: Second						SAN	ИРL	ES			
0 Natural: Brown SILTY CLAY (topsoil) 1 Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions .2 .4 .6 .6 .4 .6 .6 .6 .7 .6 .8 .7 .8 .7 .12 .6 .6 .7 .7 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .7 .7 .7 .7 .7 .7 .7 .7 </td <td></td> <td></td> <td>▼ Water Strike</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>GE #: 1/1</td>			▼ Water Strike								GE #: 1/1
0 Natural: Brown SILTY CLAY (topsoil) 1 Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions .2 .4 .6 .6 .4 .6 .6 .6 .7 .6 .8 .7 .8 .7 .12 .6 .6 .7 .7 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .7 .7 .7 .7 .7 .7 .7 .7 </td <td>es)</td> <td></td> <td></td> <td> Ö</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	es)			Ö					_		
0 Natural: Brown SILTY CLAY (topsoil) 1 Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions .2 .4 .6 .6 .4 .6 .6 .6 .7 .6 .8 .7 .8 .7 .12 .6 .6 .7 .7 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .8 .7 .7 .7 .7 .7 .7 .7 .7 .7 </td <td>neti</td> <td></td> <td></td> <td><u></u></td> <td></td> <td></td> <td></td> <td>Ê</td> <td>eve</td> <td></td> <td></td>	neti			<u></u>				Ê	eve		
0 Natural: Brown SILTY CLAY (topsoil) 1 Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions .2 (5 cm, 10%). .4 M .6 M .7 M .8 M .8 M .9 M .4 End of hole: 1.4 metres in natural material.	h (r	M=Moist D=Dry S=Saturated		H		ture		(ppr	٦	COMMENTS	
0 Natural: Brown SILTY CLAY (topsoil) 1 Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions .2 (5 cm, 10%). .4 M .6 M .7 M .8 M .8 M .9 M .4 End of hole: 1.4 metres in natural material.	Dept	STRATIGRAPHY		BRA	ype	lois	II		Vate		
Natural: Brown SLITY CLAY (topsoil) Grassed surface No dour throughout. No dour throughout. -2 -4 .4 -6 .8 -1 14 End of hole: 1.4 metres in natural material.						2	٩	ш	>		
Natural: Loose, yellow/brown/orange SAND with roots, and some hard, dark grey clay inclusions Image: Constraint of the some hard, dark grey clay inclusions .2 .4 .6 .8 .6 .6 .8 .1 1.2 .1 1.4 End of hole: 1.4 metres in natural material. 1.6 .8 1.8 .2	0-	Natural: Brown SILTY CLA	(topsoil)							Crossed surface	
Natural: Loss, yellow/brown/orange SAND with restant some hard, dark grey day inclusions (c5 cm, 10%). A A A A A A A A A A A A A	-										
.2 - (+5 cm, 10%). .4	-	Natural: Loose, yellow/brow	n/orange SAND with								
A A A A A A A A A A A A A A	2	roots, and some hard, dark $(<5 \text{ cm}, 10\%)$	grey clay inclusions								
.6 .8 1 1.2 1.4 1.4 End of hole: 1.4 metres in natural material.	.2										
.6 .8 1 1.2 1.4 End of hole: 1.4 metres in natural material.	=										
.6 .8 1 1.2 1.4 1.4 End of hole: 1.4 metres in natural material.	=										
.6 .8 1 1.2 1.4 End of hole: 1.4 metres in natural material.	4-										
.8 M 6 0 1 1 1 1 1.2 1 1 1 1.4 End of hole: 1.4 metres in natural material. 1 1.6 1 1 1.8 2 ENVIRONMENTAL											
.8 M 6 0 1 1 1 1 1.2 1 1 1 1.4 End of hole: 1.4 metres in natural material. 1 1.6 1 1 1.8 2 ENVIRONMENTAL] =										
.8 M 6 0 1 1 1 1 1.2 1 1 1 1.4 End of hole: 1.4 metres in natural material. 1 1.6 1 1 1.8 2 ENVIRONMENTAL											
.8 M 6 0 1 1 1 1 1.2 1 1 1 1.4 End of hole: 1.4 metres in natural material. 1 1.6 1 1 1.8 2 ENVIRONMENTAL	.6-										
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL	=					м	6	0			
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL	-										
1.2 1.4 End of hole: 1.4 metres in natural material.											
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL	.8-										
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL	1 3										
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL											
1.2 1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2 ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL											
1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2	1-										
1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2	=										
1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2											
1.4 End of hole: 1.4 metres in natural material. 1.6 1.8 2	=										
End of hole: 1.4 metres in natural material.	1.2										
End of hole: 1.4 metres in natural material.											
End of hole: 1.4 metres in natural material.											
End of hole: 1.4 metres in natural material.	-										
	1.4-	End of hole: 1.4 metres in n	atural material.				1				
1.8 2 2 ENVIRONMENTAL EARTH SCIENCES	-										
1.8 2 2 ENVIRONMENTAL EARTH SCIENCES	=										
1.8 2 2 ENVIRONMENTAL EARTH SCIENCES	16										
2- ENVIRONMENTAL EARTH SCIENCES	- 1.0										
2- ENVIRONMENTAL EARTH SCIENCES	-										
2- ENVIRONMENTAL EARTH SCIENCES	=										
2- ENVIRONMENTAL EARTH SCIENCES	1.8-										
EARTH SCIENCES	2-						_		_		
EARTH SCIENCES											
EARTH SCIENCES											
										EARTH SCIENCES	

LOCATIO	DN: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC	G:	TP24	LOGGED BY:
EASTING	B: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVATI	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPL	ES			05 // / /
	Disturbed	▼ Water Strike								GE #: 1/1
res)	Undisturbed	_ Standing Water Level	Ö					_		
met	Moisture				0		Ê	eve		
ţ	M=Moist D=Dry S=Saturated		APF	a)	sture		dd)	er L	COMMENTS	
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Нd	PID (ppm)	Water Level		
0-										
	Tree roots at surface	/								
	Natural: Loose, dark brown	SAND with roots.			м	6.5	0		No odour throughout.	
.2-										
.4-										
	Natural: Loose, yellow SAN	D with minor roots.								
.6-										
					М				No odour.	
.8-										
	End of hole: 1.0 metre in na	tural material.								
1.2										
1.4-										
]										
1.6										
]										
1.8										
=										
2-										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC	G:	TP25	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013							C. Pitman	
	Sample	Groundwater			~ • •		-0			
	Disturbed	Water Strike			SAN	/IPL	ES		PA	GE #: 1/1
(s	Undisturbed		g							
etre	Moisture	_ Standing Water Level						e		
Ű.	M=Moist D=Dry S=Saturated		I ⊟		e		(md	Lev		
Depth (metres)			GRAPHIC LOG	e	Moisture		PID (ppm)	Water Level	COMMENTS	
Ğ	STRATIGRAPHY		GF	Type	ž	Hd	ЫЧ	Ň		
0-	Natural: Dark brown SILTY	CLAY (topsoil).	F Z							
-					D				Grassed surface. No odour throughout.	
-										
.2-										
-	Natural: Loose, yellow/brow brown clay lenses.	n SAND with minor dark								
.4-					м	5.5	0			
=						5.5	Ŭ			
.6										
-8.										
1-										
1.2										
	End of hole: 1.2 metres in n	atural material.								
-										
1.4										
1.6										
1.8-										
2-										
									THE KNOW AND THE HOW	

LOCATIO	LOCATION: Tamarind Drive, Ballina, NSW JOB No. 512017			TESTPIT LOG: TP26				TP26	LOGGED BY:	
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater Water Strike			SAN	/IPL	ES		PA	GE #: 1/2
(si	Undisturbed	Standing Water Level	g							
letre	Moisture	⊥ 0	U C				Ê	vel		
ע) (M=Moist D=Dry S=Saturated		HH		nre		ppr	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Нd	PID (ppm)	Water Level	COMMENTS	
			0	Ĥ	2	þ	₽.	>		
0-	Fill: Firm to loose, dark brow gravels are angular (40%). FIII: WASTE - Loose, dark b									
.2	demolition rubble (50%) con	sisting of tiles, brick, wood,			D	7.5	0		No odour.	
.4-										
.6										
.8–										
1_										
1.2					м	8.5	0		No odour.	
	Tree trunk encountered (1.3	5 x 0.4 m)								
1.4										
1.6										
1.8										
2										
									ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATI	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STPIT	LOG:	TP26	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe						A.Plioplis
NORTH	NG: -	DATE STARTED: 23/1/2013		CL	IENT:		Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013						C. Pitman
	Sample	Groundwater			SAMPL	ES		
	Disturbed	▼ Water Strike					1 P/	AGE #: 2/2
es)	Undisturbed	_ Standing Water Level	Ö					
netr	Moisture							
u u	M=Moist D=Dry S=Saturated		1 =		Inre	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture pH	PID (ppm) Water Level	COMMENTS	D
			0	Ε.	M Hq			
2-	Natural: Stiff, sticky dark gre	ey CLAY with minor	\overline{Y}					
-	angular gravel.		\langle / \rangle		M/W 8	0	No odour.	
2.2								
	End of hole: 2.2 metres in n	atural material.						
-								
2.4								
-								
2.6								
2.8-								
-								
3-								
-								
3.2								
-								
3.4-								
-								
3.6-								
-								
3.8-								
	1							
4-	4							
	1							
							THE KNOW AND THE HOW	

LOCATIO	LOCATION: Tamarind Drive, Ballina, NSW JOB No. 512017			TESTPIT LOG: TP27					LOGGED BY:	
EASTING	B: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI		DATE STARTED: 23/1/2013		CLI	ΕN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013						C. Pitman		
	Sample	Groundwater			SAN	/IPL	FS			
	Disturbed	▼ Water Strike							PA	GE #: 1/2
es)	Undisturbed	Standing Water Level	00							
netr	Moisture						_ ۲	evel		
th (r	M=Moist D=Dry S=Saturated		Ηd	a a	sture		(ppr	er L(COMMENTS	
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	Чd	PID (ppm)	Water Level	COMMENTO	
0-	Fill: Loose, yellow/brown silt	v GRAVEL (70%, <0.2 cm)	KX							
			$\left \right\rangle$							
	Layer of hard yellow clay with	in gravel			D				No odour.	
.2			$\left \right\rangle$		U					
	Fill: WASTE - Mixed grey/ye clay with rubbish including b	ellow/brown silt, gravel and proken glass bottles, plastic								
	bottles, rock fragments (gra	vel to boulder sized)								
			$\left \right\rangle$							
.4-										
.6-										
				—	D					
	One hash seen		$\left \right\rangle$							
-8.	Car body part		\sum							
1-			$\left \right\rangle$							
			$\left \right\rangle$							
	Minor putrescibles (bone, pl	astic bags)								
1.2			$\left \right\rangle$							
			\otimes							
1.4			$[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$							
]										
					М	8	0		No odour.	
1.6			$ \rangle\rangle$		IVI					
1.8-										
2-			KX)							
									ENVIRONMENTAL EARTH SCIENCES	
									THE KNOW AND THE HOW	

LOCATION: Tamarind Drive, Ballina, NSW JOB No. 512017				TESTPIT LOG: TP27 LOGGED BY						LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater			SAN	/IPL	ES			
	Disturbed	▼ Water Strike							PA(GE #: 2/2
res)	Undisturbed							_		
met	Moisture M=Moist D=Dry S=Saturated		⊇		۵		Ê	eve		
Depth (metres)			GRAPHIC LOG	υ	stur		PID (ppm)	Water Level	COMMENTS	
Dep	STRATIGRAPHY		GR	Type	Moisture	Ъ	DID	Wa		
2-			KX							
2.2			$\left \right\rangle$							
2.4-	Fill: WASTE - black/brown c	layey SAND with rubbish	\mathbf{X}							
-	(tile fragments) - saturated									
-										
2.6					s					
2.8-										
-										
-										
3-			$\left \right\rangle$							
-					s	7	0		Chemical odour.	
-										
3.2										
5.2	End of hole: 3.2 metres in w collapsing due to inflow of w	vaste material - hole								
		aler.								
3.4										
]										
3.6										
3.8										
4-										
									ENVIRONMENTAL EARTH SCIENCES	
									THE KNOW AND THE HOW	_

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP28	LOGGED BY:
EASTING	3: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater			C 4 4	/IPL	– •			
	Disturbed	Water Strike					E3 	1	PA	GE #: 1/1
s)	Undisturbed	Standing Water Level	g							
etre	Moisture							<u>e</u>		
Ű.	M=Moist D=Dry S=Saturated		HIC		le		bm	Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture		PID (ppm)	Water Level	COMMENTS	
ă	STRATIGRAFIT		Ū	Ту	ž	Нd	٦	≥		
0-	Fill: Dark brown, clayey SIL	F with rootlets (topsoil).	ΚX					<u> </u>		
					М	7	0		No odour.	
.2			$\left \right\rangle$							
	Fill: Firm, dark brown, SILT tile and rock fragments (5%	Y CLAY with some gravel,								
	electrical pipe).									
			$\left \right\rangle$							
.4-										
-										
.6-			$\left \right\rangle$							
.8–										
					D	6.5	0		No odour.	
1-			$\left \right\rangle$							
	Natural: Loose, yellow/light	brown SAND.	XX			_				
1.2					М	7	0		No odour.	
	End of hole: 1.2 metres in n	atural material.								
1.4										
-										
1.6										
1.8-										
2-										
									THE KNOW AND THE HOW	-

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC	G:	TP29	LOGGED BY:
EASTING	G: -	DRILL TYPE: Backhoe		A.Pliopli:						A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sample	Groundwater		•	C V V	/IPL	E 9			
	Disturbed	_ Water Strike							PA	GE #: 1/2
(s	Undisturbed	Standing Water Level	g							
etre	Moisture	<u> </u>						vel		
u)	M=Moist D=Dry S=Saturated		H		nre		mdc	r Le		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture		PID (ppm)	Water Level	COMMENTS	
			U U	É,	Σ	Нd	₽	5		
0-	Fill: Loose, dark brown SILT	Y SAND with gravel	\mathbb{K}						Crossed surface	
-	(topsoil).								Grassed surface	
			$\left \right\rangle$		м	6.5	2-25		No odour throughout	
.2-							_			
	FIII: WASTE - Loose, light b	rown SAND, fine grained.								
	with angular to rounded gra	avels and boulders (60%),								
.4-	rubbish including old cans, r pieces, plastic bags, tiles, b	roken ceramic and metal								
	pipes and rootlets.									
.6					М					
.8-					м	7				
-0.					IVI	[′]				
1-										
					М	6	0			
1.2			$\left \right\rangle$							
1.4										
1.6										
1.8-										
2-	Brick fragments (<10 cm, 50	0%) and star pickets	KX)							
									EARTH SCIENCES	

LOCATI	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STF	PIT L	OG:	TP29	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe							A.Plioplis
NORTH	ING: -	DATE STARTED: 23/1/2013		CLI	EN	T:		Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013							C. Pitman
	Sample	Groundwater ▲ Water Strike		÷	SAM	PLE	s		PAGE #: 2/2
Depth (metres)	Undisturbed Moisture M=Moist D=Dry S=Saturated	Standing Water Level	GRAPHIC LOG		ture		Mater Level	COMMEN	ITC
	STRATIGRAPHY		GRA	Type	Moisture	Hd	Wate	COMMEN	115
2-					М	14	44		
2.2					м	8	35		
2.4-									
	Natural: Stiff, sticky, dark gr				М	14	4.9		
2.6	End of hole: 2.5 metres in n	atural material.							
2.0									
2.8									
3-									
3.2-									
3.2									
3.4-									
3.6-									
3.8-									
4-									
	I							ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW	

LOCATION: Tamarind Drive, Ballina, NSW JOB No. 512017				TESTPIT LOG: TP30					LOGGED BY:	
EASTING	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI	NG: -	DATE STARTED: 23/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 23/1/2013								C. Pitman
	Sampla	Groundwater			~ • •	451			[
	Sample Disturbed	Water Strike			SAN	ИPL Г	ES		PA	GE #: 1/1
ŝ	Undisturbed		Ŋ							
etre	Moisture	Standing Water Level						,el		
Ĕ	M=Moist D=Dry S=Saturated		HOH		le		pm)	Le		
Depth (metres)			GRAPHIC LOG	Type	Moisture		PID (ppm)	Water Level	COMMENTS	
ă	STRATIGRAPHY		<u>ں</u>	Ту	ž	Hd	Ы	Š		
0-	Fill: Loose, dark brown SAN	DY SILT with one tile	KX							
	fragment (topsoil)								Grassed surface.	
									No odour throughout.	
.2-			$\left \right\rangle$		м	6				
.2					111	ľ				
	Natural: Light brown SAND clay.	with occasional dark grey								
.4-	oldy!									
					М	6.5				
.6-										
-0.										
.8-										
1.2										
	End of hole: 1.3 metres in n	atural material.								
1.4										
1.6										
-										
1.8-										
2-										
									EARTH SCIENCES	

LOCATI	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	STI	PIT	LC)G:	TP31	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTH	NG: -	DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			SAN	1PL	ES			GE #: 1/1
	Disturbed	▼ Water Strike	0							3E #. 1/1
tres	Undisturbed	_ Standing Water Level	Ď					-		
(me	Moisture M=Moist D=Dry S=Saturated		₽		e		(mc	Leve		
Depth (metres)			GRAPHIC LOG	e	Moisture		PID (ppm)	Water Level	COMMENTS	
De	STRATIGRAPHY	0	Type	β	Нd	PIC	Wa			
0-			\overline{V}							
	Fill: Loose, dark brown SAN	IDY SILT (topsoli).								
-										
				—	М					
.2-	Natural: Dark brown SAND,	fine grained, with minor								
-	yellow/grey clay.									
-										
.4-										
-					М	7	0		No odour.	
.6-										
-										
.8-										
-										
-										
1-										
-										
1.2	End of hole: 1.2 metres in n	atural material								
1.4-										
-										
-										
1.6										
1.8-										
-										
2-										
									THE KNOW AND THE HOW	

LOCATIO	ON: Tamarind Drive, Ballina, NSW	JOB No. 512017		TE	ST	PIT	LC)G:	TP32	LOGGED BY:
EASTIN	G: -	DRILL TYPE: Backhoe								A.Plioplis
NORTHI		DATE STARTED: 22/1/2013		CL	IEN	IT:			Geolink	APPROVED:
ELEVAT	ION: -	DATE FINISHED: 22/1/2013								C. Pitman
	Sample	Groundwater			<u> </u>					
	Disturbed	Water Strike			SAN	/IPLI	ES		PA	GE #: 1/1
s)	Undisturbed	✓ Water Standing Water Level	g							
etre	Moisture						(<u>e</u>		
L (L	M=Moist D=Dry S=Saturated		¥		nre		mdc	Le L		
Depth (metres)	STRATIGRAPHY		GRAPHIC LOG	Type	Moisture	_	PID (ppm)	Water Level	COMMENTS	
			G	Ĥ	Σ	Нd	٩	5		
0-	Natural: Loose, dark brown	SANDY SILT (topsoil)								
.2-										
					м	6.5	0			
	Grading to brown SAND.								No odour.	
.4-										
.6	Natural: Loose, yellow/dark	brown SAND with some								
	clay (2%).	brown SAND with some			м	6.5	0		No odour.	
-8.										
1-										
1.2										
-	End of hole: 1.3 metres in n	atural matarial								
	End of note: 1.3 metres in n	atural material.								
1.4										
1.6										
1.8-										
2-										
									EARTH SCIENCES	

APPENDIX B

QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES

TABLE OF CONTENTS

1	INTI	RODUCTION AND BACKGROUND	2
	1.1	INTRODUCTION	2
	1.2	BACKGROUND	3
2	QUA	ALITY CONTROL AND QUALITY ASSURANCE	4
	2.1	MEASUREMENT DATA QUALITY OBJECTIVES	4
		2.1.1 Repeatability (Field collected intra-laboratory duplicates)	5
		2.1.2 Precision	5
		2.1.3 Accuracy	5
		2.1.4 Representativeness	6
		2.1.5 Completeness	6
		2.1.6 Comparability	7
		2.1.7 Sensitivity	7
		2.1.8 Blanks	7
		2.1.9 Holding times	7
		2.1.10 Procedures for anomalous samples and confirmation checking	7
	2.2	FIELD QA/QC	8
		2.2.1 Details of sampling team	8
		4.2.2 Sampling controls	8
		2.2.2 Duplicate sampling	8
		2.2.3 Field instrument calibration	17
	2.3	LABORATORY QA/QC	17
	2.4	QA/QC DATA EVALUATION	18
3	QAC	QC APPENDIX REFERENCES	19

1 INTRODUCTION AND BACKGROUND

1.1 Introduction

The aim of quality control and quality assurance (QA/QC) is to deliver data that is:

- representative of what is sampled;
- precise;
- accurate; and
- reproducible.

As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this document is to evaluate and identify the data quality objectives (DQOs) and the data quality indicators (DQIs), which are used to assess whether the DQOs have been met.

All surface water, groundwater and soil sampling procedures to be followed are described in full in our *Soil, gas and groundwater sampling manual (*Environmental Earth Sciences Ltd 2009). This document should be referred to for field procedures for sampling and conveyance. Copies are available for inspection if required.

The NSW guideline documents used in the evaluation of the data set for this investigation are:

- Australian and New Zealand Environment and Conservation Council 1992, Australian and New Zealand Guidelines for the assessment and management of contaminated sites, Australia and New Zealand Environment Council, National Health and Medical Research Council, Melbourne, Vic;
- Department of Environment and Conservation NSW 2006, *Contaminated sites: Guidelines for NSW Site Auditors Scheme*, 2nd edition, Department of Environment and Conservation NSW, Sydney, NSW;
- National Environment Protection Council (NEPC) 1999, *National environment protection (assessment of site contamination) measure*, National Environment Protection Council, Adelaide, SA;
- NSW Environment Protection Authority (EPA) 1995, *Contaminated sites: Sampling design guidelines*, EPA NSW, Chatswood, NSW; and
- NSW EPA 1997, Contaminated sites: Guidelines for consultants reporting on contaminated sites, EPA NSW, Chatswood, NSW.
- Standards Australia 2005, *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds*, (AS 4482.1), Standards Australia, Sydney, NSW; and
- Standards Australia 1999, *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances*, (AS 4482.2), Standards Australia, Homebush, NSW.

ENVIRONMENTAL EARTH SCIENCES

Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters. The PARCC (and additional QA) parameters are discussed within this report.

The following items form part of the QA/QC appendix:

- repeatability;
- precision;
- accuracy;
- representativeness;
- completeness;
- comparability;
- sensitivity;
- holding times;
- blanks; and
- procedures for anomalous samples and confirmation checking.

1.2 Background

The terms "quality assurance" and "quality control" are often confused. In any program, quality control is required before assurance can be put in place. With respect to laboratory analysis activities, these terms are defined as follows:

Quality Assurance (QA) is "a set of activities intended to establish confidence that quality requirements will be met" (AS/NZS ISO 9000:2005).

This encompasses all actions, procedures, checks and decisions undertaken to ensure the accuracy and reliability of analysis results. It includes routine procedures which ensure proper sample control, data transfer, instrument calibration, the decisions required to select and properly train staff, select equipment and analytical methods, and the day to day judgements resulting from regular scrutiny and maintenance of the laboratory system.

Quality Control (QC) is "a set of activities intended to ensure that quality requirements are actually being met" (AS/NZS ISO 9000:2005). In other words, the operational techniques and activities that are used to fulfil the requirements for quality.

These are the components of QA which serve to monitor and measure the effectiveness of other QA procedures by comparison with previously decided objectives. They include measurement of the quality of reagents, cleanliness of apparatus, accuracy and precision of methods and instrumentation, and reliability of all of these factors as implemented in a given laboratory from day to day.

A complete discussion of either of these terms or the steps for implementing them is beyond the scope of this document. It is widely recognised, however, that adoption of sound laboratory QA and QC procedures is essential and readers are referred to documentation available from the National Association of Testing Authorities (NATA), if further information is required.

2 QUALITY CONTROL AND QUALITY ASSURANCE

2.1 Measurement data quality objectives

Step 7 of the DQO process (Section 3.0 of the main report) is a focus on the quality of the information by measurement, that is, measurement data quality objectives (MDQOs). The aim of a quality control and quality assurance (QA/QC) is to deliver data that is representative of what is sampled, precise, accurate and reproducible. As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this section is to provide the MDQOs and the measurement data quality indicators (MDQIs), which will be used to establish whether the DQOs have been met.

All soil sampling procedures generally need to be undertaken according to a standard procedure, for example those procedures set out in:

- National Environment Protection Council (NEPC) 1999, *National environment protection (assessment of site contamination) measure*, National Environment Protection Council, Adelaide, SA;
- NSW Environment Protection Authority (EPA) 1995, *Contaminated sites: Sampling design guidelines,* EPA NSW, Chatswood, NSW;
- NSW EPA 1994, Contaminated sites: Guidelines for the assessment of service station sites, EPA NSW, Chatswood, NSW.
- NSW EPA 1997, Contaminated sites: Guidelines for consultants reporting on contaminated sites, EPA NSW, Chatswood, NSW.
- Standards Australia, 2005, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, (AS 4482.1), Standards Australia, Sydney, NSW; and
- Standards Australia, 1999, Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances, (AS 4482.2), Standards Australia, Homebush, NSW.

Measurement data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. Although not necessarily considered in list order, the following items should form part of the QA/QC data evaluation:

- Measured Parameters: precision, accuracy, repeatability (comparability), blanks; and
- Assessed Parameters: completeness, representative of site conditions, sensitivity, and holding times.

The laboratories used should be NATA accredited for the analytical methods performed. Containers, sample preservation (if necessary) and holding times should be consistent with industry practices as set out in NEPM and as defined by ASTM.

The QA parameters selected and the criteria used to evaluate the analytical data are defined below and presented in Table 2 of this report.

2.1.1 Repeatability (Field collected intra-laboratory duplicates)

These samples provide a check on the analytical performance of the laboratory. At least 5 percent of soil samples (1 in 20) per day of sampling from a site are collected in duplicate. For comparability of data, it is important that there is little delay in the sample submission. For split samples, because of error associated with field splitting, an RPD of between 80 and 150% (depending on the substance) will be allowed as the MDQI. Soil heterogeneity due to the "nugget effect" could result in significantly greater difference, particularly for metals. Consequently, samples with the most observable field homogeneity are selected.

Any value >50% RPD will be noted and discussed, as per Standards Australia requirements, with respect to its acceptability for inclusion in the data-set.

2.1.2 Precision

Precision is a measure of the reproducibility of results, and is assessed on the basis of agreement between a set of replicate results obtained from duplicate analyses. The precision of a duplicate determination can be measured as relative percentage difference (RPD), and is calculated from the following equation:

$$\mathsf{RPD} = \left[\frac{\mathsf{X1} - \mathsf{X2}}{\left(\frac{\mathsf{X1} + \mathsf{X2}}{2}\right)}\right] \times 100$$

where: X1 is the first duplicate value

X2 is the second duplicate value

The field blind and split duplicate results and calculated RPDs are presented in Table 1, Table 2, Table 3 and Table 4 for organics and Table 5, Table 6, Table 7 and Table 8. All results are considered to be within the acceptable range.

2.1.3 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. The determination of accuracy can be achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Accuracy is measured in terms of percentage recovery as defined by the following equation:

$$\%R = \frac{SSR - SR}{SA} \times 100$$

where:

%R = percentage recovery of the spike

SSR = spiked sample result

SR = sample result (native)

SA = spike added

Laboratories calculate percentage recoveries of spiked compounds, which are evaluated against control or acceptance limits taken from the appropriate method or the Contract Laboratory Program Statement of Work. If the spike recovery for a sample does not fall within the prescribed control limits, laboratory based corrective action is required.

Surrogate spikes consist of spiking non-target compounds into the sample prior to analysis. The spiked compounds are expected to behave during analysis in the same way as the target compounds. Every sample is spiked prior to extraction or analysis with surrogate compounds that are representative of the analysis. If surrogate spike recovery does not meet the prescribed control limits, samples should be reanalysed.

For inorganic analyses, certified reference materials are analysed (for SAL this is AGAL-10).

2.1.4 Representativeness

Data Point Evaluation

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition.

Representativeness is primarily dependent on the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handling and analysis protocols, and use of proper chain-of-custody and documentation procedures. Blanks, holding times and field duplicates are all QA parameters that can assist in the analysis of representativeness for data point evaluation and will need to be analysed as part of the measurement data quality assessment.

Data Set Evaluation

Whether the data is representative of the site is checked in part by undertaking an evaluation of the whole data set to establish the data is compatible. Data compatibility is authenticated by confirming that the laws of chemistry are upheld (i.e. nitrate is not present when Eh is - 250 mV), that intra-laboratory analysis relationships are consistent (i.e. BTEX is a subset of the TPH C_6 - C_9 fraction), that observations and field measurements are in agreement with other field data and the laboratory data and that results are consistent with the geology, history and logic.

2.1.5 Completeness

The following information is required to check for completeness of data sets:

- chain-of-custody forms (completed by Environmental Earth Sciences and the laboratory);
- sample receipt forms;
- all requested sample results reported;
- all blank data reported;
- all laboratory duplicates reported and relative percent differences (RPDs) calculated;
- all surrogate spike data reported;
- all matrix spike data reported; and

• NATA stamp on reports.

2.1.6 Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity, sampling procedures) under which separate sets of data are produced to ensure minimal common error. Data comparability should be demonstrated by the use of standardised sampling and analysis procedures. Data comparability was maintained by undertaking the investigations as follows:

- sampling during the investigation was conducted by trained Environmental Earth Sciences field team using Environmental Earth Sciences' standard operating procedures;
- all soil samples were collected from an excavator bucket or by hand from the ground surface; and
- the same laboratories (NMI and SAL) were used for organic and inorganic analysis for all relevant samples using the same NATA approved analytical methods. Split samples were sent to ALS for organic and inorganic analysis (also NATA approved).

2.1.7 Sensitivity

When interferences are present in the sample, a loss of sensitivity can occur resulting in an increase in the method detection limit. In some instances (e.g. where one or more compounds have particularly high concentrations) the sample must be diluted for analysis. This increases the method detection limit by the dilution factor.

The detection limits achieved by the laboratory, when adjusted for dry weight and interferences from the presence of other chemicals within the sampled matrix, must be less than half the site criteria for all analytes tested (i.e. 2 x LOR <site criteria).

2.1.8 Blanks

To meet the QC acceptance criteria, laboratory blanks should have no detectable concentrations of the target compounds. Trip blanks (taken to and returned from the field) and rinsate blanks (taken in the field) will only be necessary for analysing dissolved metals and volatile organic compounds in water samples where the threshold value is near the detection limit for an individual compound or element.

2.1.9 Holding times

Where standard holding times are exceeded, a discussion, using professional judgement, as to the integrity of the data will be required, taking into account such factors as field storage, laboratory storage and even sample bottle characteristics.

2.1.10 Procedures for anomalous samples and confirmation checking

All results should be checked for discrepancies by the project manager against the anticipated results and all other results within 8 hours of receipt of the results from the laboratory.

Any result that is considered by the supervising scientist to be unusually high or at variance with other results is automatically reanalysed. A significantly different result requires immediate remedial action on the whole sample batch (retesting or using an alternative analytical method) at the laboratory's expense.

After appropriate checking by laboratories, all sample analysis result work-sheets, including those of duplicates and replicate analyses, should be checked by the consultant.

ENVIRONMENTAL EARTH SCIENCES Soil (for the purpose of laboratory analysis) is defined as the portion that passes through a 2 mm sieve when air dry. The retained gravel fraction is assumed to be inert. Analysis is undertaken on the less than 2 mm fraction where possible. This procedure is not possible for organics, and original laboratory sheets are reported on an 'as received' basis unless a correction has been applied.

ENVIRONMENTAL EARTH SCIENCES

All results of chemical analysis are analysed on an air dry weight basis and reported on an oven (105°C) dry weight basis, unless specified otherwise. All samples should be adjusted for moisture content when not reported on an oven dry basis.

Once confirmation checking is completed the final laboratory report is issued.

For blind duplicates, if one sample has more than two analytes exceeding the data quality objectives, the sample is carefully checked. If the error is not apparent, the sample is rejected. If more than three samples are rejected all the samples collected at that time are rejected. These samples are then re-sampled and reanalysed.

2.2 Field QA/QC

2.2.1 Details of sampling team

Fieldwork was conducted over a 3-day period using the following sampling teams:

- Site inspection: Christine Pitman; and
- Soil sampling: Alice Plioplis and Christine Pitman.

4.2.2 Sampling controls

Decontamination procedures carried out between sampling events

Sampling equipment was limited to disposable gloves (changed at least between location and between contaminated layers) and a spatula for surface samples. The spatula was scraped clean between surface sample locations to ensure excess soil was removed.

Sample notation details

The borehole logs details for each sample collected (including time, location, initials of sampler, duplicate locations, duplicate type and field screening details) are presented in Appendix A. The chemical analyses performed on each sample are presented on the chain of custody documentation (Appendix C) which also identify for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method (if any), departure time from the site and dispatch courier.

2.2.2 Duplicate sampling

Duplicate samples were collected at a rate of one duplicate per approximately 8 samples collected (~13%). The number of duplicates collected and analysed for each analytical method is provided in the main report, while duplicate analysis results are presented in Table 5.

TABLE 1 SOIL FIELD BLIND DUPLICATE RESULTS – FD1 ORGANICS

A		TP7 0.5-0.7	FD1	RPD	FD1	RPD
Analyte	MDL	NMI - primary NMI - intra- duplicate		NMI	ALS - Inter- duplicate	ALS
BTEX	·	•	·			
Benzene	0.5/0.2	<0.5	<0.5	NC	<0.2	NC
Toluene	0.5	<0.5	<0.5	NC	<0.5	NC
Ethyl Benzene	0.5	<0.5	<0.5	NC	<0.5	NC
m, p - Xylene	1/0.5	<1	<1	NC	<0.5	NC
o - Xylene	0.5	<0.5	<0.5	NC	<0.5	NC
Total Petroleum	Hydrocarbo	ns			·	
C ₆ - C ₉	25/10	<25	<25	NC	<10	NC
C ₁₀ - C ₁₄	50	<50	<50	NC	<50	NC
C ₁₅ - C ₂₈	100	<100	<100	NC	<100	NC
C ₂₉ - C ₃₆	100	<100	<100	NC	<100	NC
C ₁₀ - C ₄₀	50	ND	ND	-	<50	NC

Notes:

1. MDL – method detection limit;

RPD relative percentage difference; 2.

3. NC - not calculable;

4. all units in mg/kg; 5.

Acceptance Criteria (see Table 2 in body of report);
a. no limit applies to <5x MDL;
b. <100-150% for low level (5x - 10 x MDL); and

- <80-130% for medium to high level (>10x MDL). c.

TABLE 2 SOIL FIELD BLIND DUPLICATE RESULTS – FD2 ORGANICS

		TP9 0.1-0.2	FD2	RPD	FD2	RPD
Analyte	MDL	NMI - primary	NMI - intra- duplicate	NMI	ALS - Inter- duplicate	ALS
Polycyclic Aromatic Hydroc	arbons	·			·	
Naphthalene	0.5	<0.5	<0.5	NC	<0.5	NC
Acenaphthylene	0.5	<0.5	<0.5	NC	<0.5	NC
Acenaphthene	0.5	<0.5	<0.5	NC	<0.5	NC
Fluorene	0.5	<0.5	<0.5	NC	<0.5	NC
Phenanthrene	0.5	<0.5	<0.5	NC	<0.5	NC
Anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Fluoranthene	0.5	<0.5	<0.5	NC	<0.5	NC
Pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Benz(a)anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Chrysene	0.5	<0.5	<0.5	NC	<0.5	NC
Benzo(b)&(k)fluoranthene	1	<1	<1	NC	<1	NC
Benzo(a)pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Indeno(1,2,3-cd)pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Dibenzo(a,h)anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Benzo(g,h,i)perylene	0.5	0.63	0.63	0.00	<0.5	NC
Total PAH	-	0.63	0.63	0.00	<0.5	NC
Total Petroleum Hydrocarbo	ons			<u>.</u>		
C ₆ - C ₉	25	<25	<25	NC	<10	NC
C ₁₀ - C ₁₄	50	<50	<50	NC	<50	NC
C ₁₅ - C ₂₈	100	<100	<100	NC	<100	NC
C ₂₉ - C ₃₆	100	120	140	15.38	<100	NC
C ₁₀ - C ₄₀	-	120	140	15.38	<50	NC

Notes:

1.

MDL – method detection limit; RPD relative percentage difference; 2.

3. NC - not calculable;

4. 5.

all units in mg/kg; Acceptance Criteria (see Table 2 in body of report);

a. no limit applies to <5x MDL;

- <100-150% for low level ($5x 10 \times MDL$); and <80-130% for medium to high level (>10x MDL). b.
- c.

TABLE 3SOIL FIELD BLIND DUPLICATE RESULTS – FD3 ORGANICS

		TP15 0.2-0.3	FD3	RPD	FD3	RPD
Analyte	MDL	NMI - primary	NMI - intra- duplicate	NMI	ALS - Inter- duplicate	ALS
Monocyclic Aromatic Hydr	rocarbor	IS		·		
Benzene	1	<1	<1	NC	<0.2	NC
Toluene	1	<1	<1	NC	<0.5	NC
Ethylbenzene	1	<1	<1	NC	<0.5	NC
m & p-Xylenes	2	<2	<2	NC	<0.5	NC
o-Xylene	1	<1	<1	NC	<0.5	NC
Styrene	1	<1	<1	NC	<0.5	NC
Isopropylbenzene	1	<1	<1	NC	<0.5	NC
n-Propylbenzene	1	<1	<1	NC	<0.5	NC
1,3,5-Trimethylbenzene	1	<1	<1	NC	<0.5	NC
tert-Butylbenzene	1	<1	<1	NC	<0.5	NC
1,2,4-Trimethylbenzene	1	<1	<1	NC	<0.5	NC
sec-Butylbenzene	1	<1	<1	NC	<0.5	NC
4-Isopropyltoluene	1	<1	<1	NC	<0.5	NC
n-Butylbenzene	1	<1	<1	NC	<0.5	NC
Halogenated Aliphatic Hyd	lrocarbo	ons				
Chloromethane	5	<5	<5	NC	<5	NC
Vinyl chloride	2	<2	<2	NC	<5	NC
Bromomethane	5	<5	<5	NC	<5	NC
Chloroethane	5	<5	<5	NC	<5	NC
Trichlorofluoromethane	1	<1	<1	NC	<5	NC
1,1-Dichloroethane	1	<1	<1	NC	<0.5	NC
Dichloromethane	1	<1	<1	NC	<0.5	NC
trans-1,2-Dichloroethene	1	<1	<1	NC	<0.5	NC
1,1-Dichloroethene	1	<1	<1	NC	<0.5	NC
2,2-Dichloropropane	1	<1	<1	NC	-	-
cis-1,2-Dichloroethene	1	<1	<1	NC	<0.5	NC
Bromochloromethane	1	<1	<1	NC		NC
1,1,1-Trichloroethane	1	<1	<1	NC	<0.5	NC
Carbon tetrachloride	1	<1	<1	NC	<0.5	NC

ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW

		TP15 0.2-0.3	FD3	RPD	FD3	RPD
Analyte	MDL	NMI - primary	NMI - intra- duplicate	NMI	ALS - Inter- duplicate	ALS
1,1-Dichloropropene	1	<1	<1	NC	-	NC
1,2-Dichloroethane	1	<1	<1	NC	<0.5	NC
Trichloroethene	1	<1	<1	NC	<0.5	NC
1,2-Dichloropropane	1	<1	<1	NC	-	
Dibromomethane	1	<1	<1	NC	<0.5	NC
cis-1,3-Dichloropropene	1	<1	<1	NC	-	-
trans-1,3- Dichloropropene	1	<1	<1	NC	<0.5	NC
1,1,2-Trichloroethane	1	<1	<1	NC	<0.5	NC
Tetrachloroethene	1	<1	<1	NC	<0.5	NC
1,3-Dichloropropane	1	<1	<1	NC	<0.5	NC
1,2-Dibromoethane	1	<1	<1	NC	<0.5	NC
1,1,1,2- Tetrachloroethane	1	<1	<1	NC	<0.5	NC
1,1,2,2- Tetrachloroethane	1	<1	<1	NC	<0.5	NC
1,2,3-Trichloropropane	1	<1	<1	NC	<0.5	NC
1,2-Dibromo-3- chloropropane	1	<1	<1	NC	<0.5	NC
Hexachlorobutadiene	1	<1	<1	NC	<0.5	NC
Halogenated Aromatic Hyd	drocarbo	ons				
Chlorobenzene	1	<1	<1	NC	<0.5	NC
Bromobenzene	1	<1	<1	NC	<0.5	NC
2-Chlorotoluene	1	<1	<1	NC	<0.5	NC
4-Chlorotoluene	1	<1	<1	NC	<0.5	NC
1,3-Dichlorobenzene	1	<1	<1	NC	<0.5	NC
1,4-Dichlorobenzene	1	<1	<1	NC	<0.5	NC
1,2-Dichlorobenzene	1	<1	<1	NC	<0.5	NC
1,2,4-Trichlorobenzene	1	<1	<1	NC	<0.5	NC
1,2,3-Trichlorobenzene	1	<1	<1	NC	<0.5	NC
1,2,3,4- Tetrachlorobenzene	1	<1	<1	NC	-	-
Trihalomethanes						
Chloroform	1	<1	<1	NC	<0.5	NC
Bromodichloromethane	1	<1	<1	NC	<0.5	NC

FD3 RPD FD3 RPD TP15 0.2-0.3 MDL Analyte NMI - intra-ALS - Inter-**NMI - primary** NMI ALS duplicate duplicate Dibromochloromethane 1 <1 <1 NC <0.5 NC NC NC Bromoform 1 <1 <1 < 0.5 Polycyclic Aromatic Hydrocarbons (volatile) Naphthalene 1 <1 <1 NC --**Oxygenated Compounds** 5 <5 <5 NC Acetone --2-Butanone (MEK) 5 <5 NC NC <5 <5 2-Hexanone (MBK) 5 NC <5 <5 NC <5 4-Methyl-2-pentanone 5 <5 <5 NC <5 NC (MIBK) Methyl tert-Butyl Ether 5 <5 <5 NC --(MTBE) Vinylacetate 5 <5 <5 NC NC <5 **Other Compounds** Carbon disulfide 5 <5 <5 NC <0.5 NC

Notes:

1. MDL – method detection limit;

2. RPD relative percentage difference;

3. NC - not calculable;

all units in mg/kg;
 Acceptance Criteri

Acceptance Criteria (see Table 2 in body of report);

a. no limit applies to <5x MDL;

- b. <100-150% for low level ($5x 10 \times MDL$); and
- c. <80-130% for medium to high level (>10x MDL).

ENVIRONMENTAL EARTH SCIENCES THE KNOW AND THE HOW

TABLE 4 SOIL FIELD BLIND DUPLICATE RESULTS – FD4 ORGANICS

		SS5 0.0-0.1	FD4	RPD	FD4	RPD
Analyte	MDL	NMI - primary	NMI - intra- duplicate	NMI	ALS - Inter- duplicate	ALS
Polycyclic Aromatic Hydroc	arbons			·		
Naphthalene	0.5	<0.5	<0.5	NC	<0.5	NC
Acenaphthylene	0.5	<0.5	<0.5	NC	<0.5	NC
Acenaphthene	0.5	<0.5	<0.5	NC	<0.5	NC
Fluorene	0.5	<0.5	<0.5	NC	<0.5	NC
Phenanthrene	0.5	<0.5	<0.5	NC	<0.5	NC
Anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Fluoranthene	0.5	<0.5	<0.5	NC	<0.5	NC
Pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Benz(a)anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Chrysene	0.5	<0.5	<0.5	NC	<0.5	NC
Benzo(b)&(k)fluoranthene	1	<1	<1	NC	<1	NC
Benzo(a)pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Indeno(1,2,3-cd)pyrene	0.5	<0.5	<0.5	NC	<0.5	NC
Dibenzo(a,h)anthracene	0.5	<0.5	<0.5	NC	<0.5	NC
Benzo(g,h,i)perylene	0.5	<0.5	<0.5	NC	<0.5	NC
Total PAH	-	0	0	NC	<0.5	NC
Total Petroleum Hydrocarbo	ons	1	1			-
C ₆ - C ₉	25	<25	<25	NC	<10	NC
C ₁₀ - C ₁₄	50	<50	<50	NC	90	NC
C ₁₅ - C ₂₈	100	260	230	12.24	1,530	141.90
C ₂₉ - C ₃₆	100	370	440	17.28	1,180	104.52
$C_{10} - C_{36}$	-	630	670	6.15	2,800	126.53

Notes:

MDL – method detection limit; RPD relative percentage difference; 1.

2.

3. NC - not calculable;

all units in mg/kg; 4.

5. **bold** values indicated exceedance of acceptance criteria;

6. 7.

italicised values indicated exceedance of acceptance of a *italicised* values indicate RPD is >50 % trigger value; Acceptance Criteria (see Table 2 in body of report); a. no limit applies to <5x MDL;

<100-150% for low level (5x - 10 x MDL); and b.

<80-130% for medium to high level (>10x MDL). c.

TABLE 5 SOIL FIELD BLIND DUPLICATE RESULTS – FD1 INORGANICS

Anglista	MDL	TP7 0.5-0.7	FD1	RPD	FD1	RPD
Analyte	MDL	SAL - primary	SAL - intra- duplicate	SAL	ALS - Inter- duplicate	ALS
Cu	0.5/5	4.5	5	10.53	10	75.86
Pb	0.5/5	9	10	10.53	9	0.00
Zn	0.5/5	27	26	3.77	50	59.74
Cd	0.5/1	<0.5	<0.5	NC	<1	NC
Cr	0.5/2	17	17	0.00	50	98.51
Ni	0.5/2	8	8.5	6.06	19	81.48
As	0.5/5	3	3.5	15.38	5	50.00
Hg	0.005	0.035	0.03	15.38	-	-

Notes:

- MDL method detection limit; 1.
- 2. RPD relative percentage difference;
- 3. NC - not calculable;
- 4. all units in mg/kg;
- 5. - not tested
- **bold** values indicated exceedance of acceptance criteria; 6.
- 7. italicised values indicate RPD is >50 % trigger value; 8.
 - Acceptance Criteria (see Table 2 in body of report);
 - a. no limit applies to <5x MDL;
 - <80% for low level (5x 10 x MDL); and b.
 - c. <50% for medium to high level (>10x MDL).

TABLE 6 SOIL FIELD BLIND DUPLICATE RESULTS – FD2 INORGANICS

Analyta	MDL	TP9 0.1-0.2	FD2	RPD	FD2	RPD
Analyte	WIDL	SAL - primary	SAL - intra- duplicate	SAL	ALS - Inter- duplicate	ALS
Cu	0.5/5	13	12	8.00	16	20.69
Pb	0.5/5	28	27	3.64	30	6.90
Zn	0.5/5	84	86	2.35	105	22.22
Cd	0.5/1	<0.5	<0.5	NC	<1	NC
Cr	0.5/2	5	6	18.18	7	33.33
Ni	0.5/2	10	10	0.00	7	35.29
As	0.5/5	4	4	0.00	<5	-
Hg	0.005	0.035	0.03	15.38	-	-

Notes:

1. MDL - method detection limit;

RPD relative percentage difference; 2.

- NC not calculable; 3.
- 4. all units in mg/kg;

5. - not tested

- Acceptance Criteria (see Table 2 in body of report); 6.
 - a. no limit applies to <5x MDL;
 - <80% for low level (5x 10 x MDL); and <50% for medium to high level (>10x MDL). b.
 - c.

TABLE 7 SOIL FIELD BLIND DUPLICATE RESULTS – FD3 INORGANICS

Analyte MDL		TP15 0.2-0.3	FD3	RPD	FD3	RPD
Analyte	MDL	SAL - primary	SAL - intra- duplicate	SAL	ALS - Inter- duplicate	ALS
Cu	0.5/5	34	7.5	127.71	26	26.67
Pb	0.5/5	47	36	26.51	58	20.95
Zn	0.5/5	57	38	40.00	100	54.78
Cd	0.5/1	<0.5	<0.5	NC	<1	NC
Cr	0.5/2	11	9.5	14.63	19	53.33
Ni	0.5/2	8.5	7	19.35	16	61.22
As	0.5/5	3.5	3.5	0.00	6	52.63
Hg	0.005	0.06	0.035	52.63	-	-

Notes:

- MDL method detection limit; 1.
- 2. RPD relative percentage difference;
- 3. NC - not calculable;
- 4. all units in mg/kg;
- 5. - not tested
- bold values indicated exceedance of acceptance criteria; 6.
- 7. italicised values indicate RPD is >50 % trigger value; 8.
 - Acceptance Criteria (see Table 2 in body of report);
 - a. no limit applies to <5x MDL; b.
 - <80% for low level (5x 10 x MDL); and c. <50% for medium to high level (>10x MDL).

TABLE 8 SOIL FIELD BLIND DUPLICATE RESULTS – FD4 INORGANICS

Analyte	MDL	SS5 0.0-0.1	FD4	RPD	FD4	RPD
Analyte	WIDL	SAL - primary	SAL - intra- duplicate	SAL	ALS - Inter- duplicate	ALS
Cu	0.5/5	23	25	8.33	41	56.25
Pb	0.5/5	100	105	4.88	167	50.19
Zn	0.5/5	250	260	3.92	392	44.24
Cd	0.5/1	0.5	0.5	0	<1	NC
Cr	0.5/2	13	15	14.29	30	79.07
Ni	0.5/2	11	11	0.00	14	24.00
As	0.5/5	4.5	4	11.76	9	66.67
Hg	0.005	0.03	0.03	0.00	-	-

Notes:

1. MDL - method detection limit;

- RPD relative percentage difference; 2.
- 3. NC - not calculable;
- 4. all units in mg/kg;
- 5. - not tested
- bold values indicated exceedance of acceptance criteria; 6.
- 7. italicised values indicate RPD is >50 % trigger value; 8.
 - Acceptance Criteria (see Table 2 in body of report);
 - no limit applies to <5x MDL; a.
 - <80% for low level (5x 10 x MDL); and b. c.
 - <50% for medium to high level (>10x MDL).

Duplicate samples were split using two separate methods. In the case of non-volatile samples, the soil sample was mixed and then distributed between two bags.

For volatile samples, soil was collected from the stockpiled material directly from the excavator bucket, from a piece of undisturbed soil where possible and placed immediately in two clean glass jars. The field scientists typically attempt to disturb soils as little as possible due to the high potential for loss of volatiles.

Blanks, spikes and rinsate samples

The scope of this project did not include analysis of trip and field blanks, background samples, rinsate samples or laboratory prepared trip spikes for the soil sampling program. Environmental Earth Sciences NNSW did not consider analysis of trip blanks, rinsate blanks or trip spikes necessary for the following reasons:

- a **trip blank** is used to document contamination attributable to shipping procedures for volatile components. For this project shipping was closely monitored, with collected samples immediately placed upright within a chilled and darkened cooler and passed directly from the field scientist to the courier. This process is documented within the chain of custody documentation. A field blank is used to document contamination attributable to field handling. The measurement of volatiles present within samples due to field handling procedure is a measurement of false positives. False positives are not considered to be a major concern due to the industrial nature of the site.
- **rinsate samples** are a measure of potential cross contamination between samples due to contamination on sampling equipment. Rinsate samples were not collected as disposable gloves were used between sampling locations (and individual samples) and the spatula was scraped clean when undertake surface sampling.
- laboratory prepared trip spikes are used to measure potential volatile contaminant loss due to transport and field handling procedures. Environmental Earth Sciences NNSW follows strict sample handling procedures and consider the potential for volatile loss during handling and transport to be low. Furthermore the use of laboratory prepared trip spikes is difficult to control on a site such as this where the soil matrix is considerably varied. The ability of a laboratory prepared trip spike to accurately represent the matrix of fill samples collected from the site is thought to limit the usefulness of the data. For these reasons project laboratory prepared trip spikes were not used for this project.

2.2.3 Field instrument calibration

A photoionisation detector (PID) and a landfill gas analyser were used for the soil sampling program. The PID was bump tested prior to use which indicated that the sensors were in good condition. The PID is calibrated on a regular basis by Environmental Earth Sciences NSW staff.

A calibration record for the landfill gas analyser is attached in Appendix D.

2.3 Laboratory QA/QC

Organic analysis for this project was completed by the National Measurement Institute (NMI) and inorganic analysis was completed by Sydney Analytical Laboratories (SAL). Both laboratories are accredited by NATA for the methods used, details of this accreditation can

be viewed at <u>http://www.nata.asn.au/</u>, while details of the samples sent to each laboratory and the analysis requested are contained in the chain of custody documentation held in Appendix C. The analytical methods are noted on the laboratory transcripts. The collection date of samples, laboratory extraction date and allowable holding time are presented in Table 9. All analysis was completed within the allowable holding times.

SAL complete a laboratory blank a laboratory duplicate and analysis of a certified reference material. These results are reported in SAL report SAL24504 (Appendix C). All intralaboratory trials completed by SAL were within the acceptance criteria set by the laboratory.

Analyte - Soil		Dates		Allowable holding	Conclusion
	Collected	Extracted	Analysed	time	Conclusion
Metals	22-23/01/13	-	7/02/13	6 months	Acceptable
Hg	22-23/01/13	-	7/02/13	28 days	Acceptable
TPH C6-C36	22-23/01/13	31/01/13	31/01/13	14 days	Acceptable
PAH	22-23/01/13	31/01/13	31/01/13	14 days	Acceptable
Volatile organics	22-23/01/13	31/01/13	31/01/13	14 days	Acceptable
Semi-volatile organics	22-23/01/13	31/01/13	31/01/13	14-30 days	Acceptable

TABLE 9HOLDING TIMES

NMI complete laboratory control samples, laboratory blanks, sample duplicates, surrogate spikes and matrix spikes. These results are presented in the NMI reports RN955243, RN955245, RN955246 and RN955248 (Appendix C).

These reports include details of surrogates and spikes used, percent recoveries of surrogates and spikes used, the instrument detection limits, the method detection limits, the practical quantification limits and the reference samples results.

2.4 QA/QC data evaluation

Up to 13 RPD exceedances were detected for inter-laboratory duplicates, and 2 for intralaboratory duplicates. These were all for heavy metals, with the exception of one interlaboratory duplicate for C_{15} - C_{28} .

Fill material can be heterogeneous, with heavy metals typically forming in clusters, thus it is expected that some variety will be encountered within samples. In addition, different laboratories place samples within extraction liquids for varying amount of time, which may produce slightly different results. This may be the case for heavy metals in the natural material of sample and duplicate TP7 (0.5-0.7) and FD1, where exceedances were noted for heavy metals in the inter-laboratory duplicate.

For the organic analyte exceedance, the sample was collected from an area were a thin layer of pitch (~3 cm) overlay the fill material and it is possible that some fill material was collected for the inter-laboratory duplicate that was in contact with this. The intra-laboratory duplicate did not display the same difference.

All results adhered to chemical laws or were not outside logical explanation. Metal and pH levels in natural soil were within the expected range.

Extraction and analysis of samples were all within the relevant prescribed holding times. The internal laboratory control results (blanks, duplicates and spikes) are considered to be acceptable.

Based on information presented in Sections 4.1, 4.2 and 4.3 it can be confidently stated that the MDQO's for this project have been met and the data set is considered to be reliable.

3 QAQC APPENDIX REFERENCES

- American Public Health Association (APHA) 2005, *Standard methods for the examination of water and waste-water*, 21st edition, APHA, Washington DC.
- Australian and New Zealand Environment and Conservation Council 1992, Australian and New Zealand Guidelines for the assessment and management of contaminated sites, Australia and New Zealand Environment Council, National Health and Medical Research Council, Melbourne, Victoria.
- Australian/New Zealand Standard 2008, *Quality management systems Requirements* (AS/NZS ISO 9001:2008) Standards Australia/Standards New Zealand, Sydney/Wellington.
- Environmental Earth Sciences 2009, *Soil, gas and groundwater sampling manual,* Unpublished.
- International Organisation for Standardisation 2005, *Quality management systems Fundamentals and vocabulary*, (ISO 9000:2005).Lock, WH 1996, *Composite sampling*, National Environmental Health Forum (NEHF), Adelaide, SA.
- National Environment Protection Council (NEPC) 1999, National environment protection (assessment of site contamination) measure, National Environment Protection Council, Adelaide, SA.
- NSW Department of Environment and Conservation (2006), *Contaminated sites: Guidelines* for NSW Site Auditors Scheme (2nd edition).
- NSW Environment Protection Authority (EPA) 1995, *Contaminated sites:* Sampling design guidelines, EPA NSW, Chatswood, NSW.
- NSW EPA 1994, Contaminated sites: Guidelines for the assessment of service station sites, EPA NSW, Chatswood, NSW.
- NSW EPA 1997, Contaminated sites: Guidelines for consultants reporting on contaminated sites, EPA NSW, Chatswood, NSW.
- Rayment, GE & Higginson, FR 1992, Australian laboratory handbook of soil and water chemical methods, Inkarta Press, Melbourne.
- Standards Australia, 2005, *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds*, (AS 4482.1), Standards Australia, Sydney, NSW.

Standards Australia, 1999, *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances*, (AS4482.2), Standards Australia, Homebush, NSW.

APPENDIX C

LABORATORY TRANSCRIPTS AND CHAIN OF CUSTODY FORMS

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

				515		
						Page: 1 of 6
					Report	No. RN955243
Client : Environment	al & Earth Sciei	nces NSW		Job No.	: ENVI55/	/130125
PO BOX 1519				Quote No.	: QT-019	70
BALLINA N	SW 2478			Order No.	:	
				Date Sam	pled :	
				Date Rece	ived : 25-JAN	-2013
Attention : CHRISTINE	PITMAN			Sampled E	By : CLIENT	
Project Name :						
Your Client Services Manage	r : BF	RIAN WOODWARD		Phone	: (02) 944	490151
Lab Reg No. Sample			Sample Descrip			
N13/002176 TP1 0.0				JOB 512017 22		
N13/002180 TP6 0.4				JOB 512017 22		
N13/002181 TP6 1.1				JOB 512017 22		
N13/002182 TP7 0.5	-0.7		SOIL BALLINA	JOB 512017 22	/01/13	
Lab Reg No.		N13/002176	N13/002180	N13/002181	N13/002182	
Sample Reference		TP1 0.0-0.1	TP6 0.4-0-5	TP6 1.1-1-2	TP7 0.5-0.7	-
	Units	11 1 0.0-0.1	11 0 0.4-0-5	110 1.1-1-2	11 / 0.5-0.7	Method
BTEX	O mto					method
Benzene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1121
Toluene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1121
Ethyl Benzene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1121
m, p - Xylene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1121
o - Xylene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1121
Surrogate: TOL-D8	%REC	103	102	103	103	NGCMS_1121
Total Petroleum Hydrocarbor	IS					
ТРН С6 - С9	mg/kg	< 25	< 25	< 25	< 25	NGCMS_1121
TPH C10 - C14	mg/kg	< 50	< 50	< 50	< 50	NGCMS_1112
TPH C15 - C28	mg/kg	< 100	< 100	< 100	< 100	NGCMS_1112
TPH C29 - C36	mg/kg	< 100	< 100	< 100	< 100	NGCMS_1112
Surrogate: TOL-D8	%REC	103	102	103	103	NGCMS_1121
Dates	•					
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	
Date analysed		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	
. <u>.</u>		•			•	

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 2 of 6 Report No. RN955243

					Керонті	NO. RIN933243
Lab Reg No.		N13/002176	N13/002180	N13/002181	N13/002182	
Sample Reference		TP1 0.0-0.1	TP6 0.4-0-5	TP6 1.1-1-2	TP7 0.5-0.7	
	Units					Method
Trace Elements						
Total Solids	%	84.7	68.9	86.0	72.8	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

								Page: 3 of 6
							Report	No. RN955243
Client : E	Environmental	& Earth Science	s NSW	Job No. : ENVI55/130125			130125	
F	PO BOX 1519				Quote No.	:	QT-019	70
E	BALLINA NSW	/ 2478			Order No.	:		
					Date Sam	oled :		
					Date Rece	ived :	25-JAN	2013
Attention : 0	CHRISTINE PIT	MAN			Sampled B	sy :	CLIENT	
Project Name :								
Your Client Servi	ces Manager	: BRIAN	N WOODWARD		Phone	:	(02) 944	190151
Lab Dag Na	Commis Dof			Comula Deceria	tion			
Lab Reg No. N13/002186	Sample Ref TP10 0.4-0			Sample Descrip	JOB 512017 22	/01/12		
N13/002188	TP10 0.4-0 TP11 0.7-0				JOB 512017 22			
N13/002187	TP11 0.7-0				JOB 512017 22			
N13/002189	FD1). /			JOB 512017 22			
NT3/002192	TUT			SOIL BALLINA	JOB 512017 22	01/13		
Lab Reg No.			N13/002186	N13/002187	N13/002189	N13/0	02192	
Sample Referenc	e		TP10 0.4-0.5	TP11 0.7-0.8	TP12 0.6-0.7	FD1		
		Units						Method
BTEX								
Benzene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5		NGCMS_1121
Toluene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5		NGCMS_1121
Ethyl Benzene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5		NGCMS_1121
m, p - Xylene		mg/kg	< 1	< 1	< 1	< 1		NGCMS_1121
o - Xylene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5		NGCMS_1121
Surrogate: TOL-D		%REC	102	101	103	100		NGCMS_1121
Total Petroleum I	Hydrocarbons	-						
TPH C6 - C9		mg/kg	< 25	< 25	25	< 25		NGCMS_1121
TPH C10 - C14		mg/kg	< 50	< 50	520	< 50		NGCMS_1112
TPH C15 - C28		mg/kg	660	< 100	1600	< 100		NGCMS_1112
TPH C29 - C36		mg/kg	270	< 100	450	< 100		NGCMS_1112
Surrogate: TOL-D)8	%REC	102	101	103	100		NGCMS_1121
Dates								
Date extracted			31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JA	N-2013	
Date analysed			31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JA	N-2013	

 \mathcal{O}

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 4 of 6 Report No. RN955243

					перент	10. INN 755245
Lab Reg No.		N13/002186	N13/002187	N13/002189	N13/002192	
Sample Reference		TP10 0.4-0.5	TP11 0.7-0.8	TP12 0.6-0.7	FD1	
	Units					Method
Trace Elements						
Total Solids	%	89.1	93.8	82.0	73.5	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

	Page: 5 of 6
	Report No. RN955243
Client : Environmental & Earth Sciences NSW Job No.	: ENVI55/130125
PO BOX 1519 Quote No.	: QT-01970
BALLINA NSW 2478 Order No.	:
Date Sampl	ed :
Date Receiv	red : 25-JAN-2013
Attention : CHRISTINE PITMAN Sampled By	: CLIENT
Project Name :	
Your Client Services Manager : BRIAN WOODWARD Phone	: (02) 94490151

Lab Reg No.	Sample Ref	Sample Description
N13/002202	SS1 0.0-0.1	SOIL BALLINA JOB 512017 23/01/13
N13/002204	SS6 0.0-0.1	SOIL BALLINA JOB 512017 23/01/13

Lab Reg No.		N13/002202	N13/002204	
Sample Reference		SS1 0.0-0.1	SS6 0.0-0.1	
	Units			Method
BTEX				
Benzene	mg/kg	< 0.5	< 0.5	NGCMS_1121
Toluene	mg/kg	< 0.5	< 0.5	NGCMS_1121
Ethyl Benzene	mg/kg	< 0.5	< 0.5	NGCMS_1121
m, p - Xylene	mg/kg	< 1	< 1	NGCMS_1121
o - Xylene	mg/kg	< 0.5	< 0.5	NGCMS_1121
Surrogate: TOL-D8	%REC	100	102	NGCMS_1121
Total Petroleum Hydrocar	bons			
TPH C6 - C9	mg/kg	< 25	< 25	NGCMS_1121
TPH C10 - C14	mg/kg	< 50	< 50	NGCMS_1112
TPH C15 - C28	mg/kg	< 100	110	NGCMS_1112
TPH C29 - C36	mg/kg	< 100	400	NGCMS_1112
Surrogate: TOL-D8	%REC	100	102	NGCMS_1121
Dates				
Date extracted		31-JAN-2013	31-JAN-2013	
Date analysed		31-JAN-2013	31-JAN-2013	

 \mathcal{O}

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 6 of 6 Report No. RN955243

					10: 111/00210
Lab Reg No.		N13/002202	N13/002204		
Sample Reference		SS1 0.0-0.1	SS6 0.0-0.1		
	Units				Method
Trace Elements					
Total Solids	%	94.8	88.3		NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN954893 RN955202

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

		KLI OK I	UI ANALI	515				
					D 1	Page: 1 of 4		
						No. RN955245		
Client : Environment		nces NSW		Job No.	: ENVI55			
PO BOX 1519				Quote No.		/0		
BALLINA NSW 2478				Order No. :				
		Date Sam						
					ived : 25-JAN	-2013		
Attention : CHRISTINE F	PITMAN			Sampled E	By : CLIENT			
Project Name :								
Your Client Services Manage	r : BF	RIAN WOODWARD		Phone	: (02) 94	490151		
Lab Reg No. Sample F	Ref		Sample Descrip	tion				
N13/002177 TP4 0.1-				JOB 512017 22	/01/13			
N13/002178 TP5 0.1-				JOB 512017 22				
N13/002183 TP8 0.2-				JOB 512017 22				
N13/002184 TP9 0.1-				JOB 512017 22				
113/002104 11 / 0.14	0.2		JUIE DALLINA	500 512017 22	/01/13			
Lab Reg No.		N13/002177	N13/002178	N13/002183	N13/002184			
Sample Reference		TP4 0.1-0.2	TP5 0.1-0.2	TP8 0.2-0.3	TP9 0.1-0.2			
	Units					Method		
Polycyclic Aromatic Hydrocar	bons							
Naphthalene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Acenaphthylene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Acenaphthene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Fluorene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Phenanthrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Fluoranthene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Benz(a)anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Chrysene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Benzo(b)&(k)fluoranthene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1111		
Benzo(a)pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5			
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5			
Dibenzo(a,h)anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5			
Benzo(g,h,i)perylene	mg/kg	< 0.5	< 0.5	< 0.5	0.63			
Surrogate: TER-D14	%REC	95	97	99	100	NGCMS_1111		
Total Petroleum Hydrocarbon	s							
ТРН С6 - С9	mg/kg	< 25	< 25	< 25	< 25	NGCMS_1121		
TPH C10 - C14	mg/kg	< 50	< 50	< 50	< 50	NGCMS_1112		
TPH C15 - C28	mg/kg	< 100	< 100	< 100	< 100	 NGCMS_1112		
TPH C29 - C36	mg/kg	< 100	< 100	< 100	120			
Surrogate: TOL-D8	%REC	102	102	103	103			
Dates	I	U		1	1			
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013			
Date analysed		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	1		
		2 2 2 2 2 2 7 0				1		

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 2 of 4 Report No. RN955245

					Керонт і	NO. INN 755245
Lab Reg No.		N13/002177	N13/002178	N13/002183	N13/002184	
Sample Reference		TP4 0.1-0.2	TP5 0.1-0.2	TP8 0.2-0.3	TP9 0.1-0.2	
	Units					Method

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

Lab Reg No.		N13/002177	N13/002178	N13/002183	N13/002184	
Sample Reference		TP4 0.1-0.2	TP5 0.1-0.2	TP8 0.2-0.3	TP9 0.1-0.2	
	Units					Method
Trace Elements						
Total Solids	%	92.0	89.3	83.6	93.9	NT2_49

by h

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

				515		Page: 3 of 4		
					Report	No. RN955245		
Client : Environmental & Earth Sciences NSW Job No.					: ENVI55/130125			
PO BOX 1519		Quote No.						
BALLINA NS			Order No. :					
Di Leini (110)	2170		Date Sampled :					
	Date Received : 25-JAN-2013							
Attention : CHRISTINE PI	τμανι		Sampled By : CLIENT					
Project Name :				oumpiou E				
Your Client Services Manager	· BRIA	AN WOODWARD		Phone : (02) 94490151				
rour onent oervices manager				THONG	. (02) / 1	170101		
Lab Reg No. Sample Re	ef		Sample Descrip	tion				
N13/002188 TP12 0.2-	-0.3		SOIL BALLINA	JOB 512017 22	/01/13			
N13/002193 FD2			SOIL BALLINA	JOB 512017 22	/01/13			
N13/002203 SS5 0.0-0).1		SOIL BALLINA	JOB 512017 23	/01/13			
N13/002205 FD4			SOIL BALLINA	JOB 512017 23	/01/13			
Lab Reg No.		N13/002188	N13/002193	N13/002203	N13/002205			
Sample Reference		TP12 0.2-0.3	FD2	SS5 0.0-0.1	FD4			
	Units					Method		
Polycyclic Aromatic Hydrocarb	ons	<u>.</u>	•					
Naphthalene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Acenaphthylene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Acenaphthene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Fluorene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Phenanthrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Fluoranthene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Benz(a)anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Chrysene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Benzo(b)&(k)fluoranthene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1111		
Benzo(a)pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Dibenzo(a,h)anthracene	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	NGCMS_1111		
Benzo(g,h,i)perylene	mg/kg	< 0.5	0.63	< 0.5	< 0.5	NGCMS_1111		
Surrogate: TER-D14	%REC	111	106	99	103	NGCMS_1111		
Total Petroleum Hydrocarbons								
ТРН С6 - С9	mg/kg	< 25	< 25	< 25	< 25	NGCMS_1121		
TPH C10 - C14	mg/kg	< 50	< 50	< 50	< 50	NGCMS_1112		
TPH C15 - C28	mg/kg	< 100	< 100	260	230	NGCMS_1112		
TPH C29 - C36	mg/kg	< 100	140	370	440	NGCMS_1112		
Surrogate: TOL-D8	%REC	102	101	101	102	NGCMS_1121		
Dates								
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013			
Date analysed	1	31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	1		

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 4 of 4 Report No. RN955245

					Керопт і	NO: NN 755245
Lab Reg No.		N13/002188	N13/002193	N13/002203	N13/002205	
Sample Reference		TP12 0.2-0.3	FD2	SS5 0.0-0.1	FD4	
	Units					Method

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

Lab Reg No.		N13/002188	N13/002193	N13/002203	N13/002205	
Sample Reference		TP12 0.2-0.3	FD2	SS5 0.0-0.1	FD4	
	Units					Method
Trace Elements						
Total Solids	%	83.5	94.4	90.5	91.9	NT2_49

hy he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN954893 RN955202

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

		KLFUKI	UT ANALT	515			
						Page: 1 of 10	
						No. RN955246	
Client : Environmental	Job No. : ENVI55/130125			/130125			
PO BOX 1519	Quote No. : QT-01970						
BALLINA NSW		Order No.	:				
				Date Sam	oled :		
		Date Received : 25-JAN-2013					
Attention : CHRISTINE PIT	MAN		Sampled By : CLIENT				
Project Name :							
Your Client Services Manager	: BRIAI	N WOODWARD		Phone	: (02) 94	490151	
Lab Reg No. Sample Ret	f		Sample Descrip	tion			
N13/002179 TP6 0.3				JOB 512017 22	/01/13		
N13/002191 TP15 0.2-0) 3			JOB 512017 22			
N13/002194 FD3	5.0			JOB 512017 22			
N13/002194 TP20 2.0-2	2.1			JOB 512017 22			
11202.02	- • •			555 512017 22			
Lab Reg No.		N13/002179	N13/002191	N13/002194	N13/002196		
Sample Reference		TP6 0.3	TP15 0.2-0.3	FD3	TP20 2.0-2.1		
	Units					Method	
Monocyclic Aromatic Hydrocarb	oons NMI 1120	Screen					
Benzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Toluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Ethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
m & p-Xylenes	mg/kg	< 2	< 2	< 2	< 2	NGCMS_1120	
o-Xylene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Styrene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Isopropylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
n-Propylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
1,3,5-Trimethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
tert-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
1,2,4-Trimethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
sec-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
4-Isopropyltoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
n-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Halogenated Aliphatic Hydroca	rbons NMI 1120) Screen					
Chloromethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120	
Vinyl chloride	mg/kg	< 2	< 2	< 2	< 2	NGCMS_1120	
Bromomethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120	
Chloroethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120	
Trichlorofluoromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
1,1-Dichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Dichloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
trans-1,2-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
1,1-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
2,2-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
cis-1,2-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
Bromochloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	
1,1,1-Trichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120	

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 2 of 10 Report No. RN955246

Lab Reg No.		N13/002179	N13/002191	N13/002194	N13/002196	NO. RN955246
Sample Reference	1	TP6 0.3	TP15 0.2-0.3	FD3	TP20 2.0-2.1	1
	Units					Method
Halogenated Aliphatic Hydroca	arbons NMI 1120) Screen	•	•		
Carbon tetrachloride	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Trichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Dibromomethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
cis-1,3-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
trans-1,3-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,2-Trichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Tetrachloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,3-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dibromoethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,1,2-Tetrachloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,2,2-Tetrachloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3-Trichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dibromo-3-chloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Hexachlorobutadiene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Halogenated Aromatic Hydroca	rbons NMI 1120	Screen	•			
Chlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
2-Chlorotoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
4-Chlorotoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,3-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,4-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,4-Trichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3-Trichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3,4-Tetrachlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Trihalomethanes NMI 1120 Scr	reen		•	•		
Chloroform	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromodichloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Dibromochloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromoform	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Polycyclic Aromatic Hydrocarbo		1120 Screen				
Naphthalene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Oxygenated Compounds NMI 1	120 Screen	•		•	•	
Acetone	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
2-Butanone (MEK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
2-Hexanone (MBK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
4-Methyl-2-pentanone (MIBK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Methyl tert-Butyl Ether (MTBE)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Vinylacetate	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Other Compounds NMI 1120 S	0 0		•	•	•	•
Carbon disulfide	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
105 Delhi Road, North Ryde	e NSW 2113 Te	I: +61 2 9449	0111 Fax: + 61	2 9449 1653 v	ww.measureme	

Page: 3 of 10 Report No. RN955246

Lab Reg No.		N13/002179	N13/002191	N13/002194	N13/002196	
Lab Rey NO.		1113/002179	1113/002191	NT3/002194	113/002190	
Sample Reference		TP6 0.3	TP15 0.2-0.3	FD3	TP20 2.0-2.1	
	Units					Method
Other Compounds NMI 1120 Se	creen					
Surrogate: DBFM	%REC	116	116	111	109	NGCMS_1120
Surrogate: TOL-D8	%REC	116	94	110	114	NGCMS_1120
Surrogate: 4-BFB	%REC	89	96	89	87	NGCMS_1120
Dates						
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	
Date analysed		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

Lab Reg No.		N13/002179	N13/002191	N13/002194	N13/002196	
Sample Reference		TP6 0.3	TP15 0.2-0.3	FD3	TP20 2.0-2.1	
	Units					Method
Trace Elements						
Total Solids	%	86.8	83.0	82.4	89.3	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

			OF ANAL I	010		
						Page: 4 of 10
01				1.1.5		No. RN955246
Client : Environmental		es NSW		Job No. Quote No.	: ENVI55/ : QT-019	
PO BOX 1519						70
BALLINA NSV	V 2478			Order No.	:	
				Date Sam		
					ived : 25-JAN	-2013
Attention : CHRISTINE PI	IMAN			Sampled E	By : CLIENT	
Project Name :					(
Your Client Services Manager	: BRIA	N WOODWARD		Phone	: (02) 944	490151
Lab Reg No. Sample Re	ef		Sample Descrip	tion		
N13/002197 TP21 1.4-				JOB 512017 23	/01/13	
N13/002198 TP26 1.1-				JOB 512017 23		
N13/002199 TP27 3.0-				JOB 512017 23		
N13/002200 TP28 0.9-				JOB 512017 23		
Lab Reg No.		N13/002197	N13/002198	N13/002199	N13/002200	
Sample Reference		TP21 1.4-1.5	TP26 1.1-1.2	TP27 3.0-3.1	TP28 0.9-1.0	
	Units					Method
Monocyclic Aromatic Hydrocar	bons NMI 1120	Screen				
Benzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Toluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Ethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
m & p-Xylenes	mg/kg	< 2	< 2	< 2	< 2	NGCMS_1120
o-Xylene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Styrene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Isopropylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
n-Propylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,3,5-Trimethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
tert-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,4-Trimethylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
sec-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
4-Isopropyltoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
n-Butylbenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Halogenated Aliphatic Hydroc		0 Screen		1		
Chloromethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Vinyl chloride	mg/kg	< 2	< 2	< 2	< 2	NGCMS_1120
Bromomethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Chloroethane	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Trichlorofluoromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1-Dichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Dichloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
trans-1,2-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
2,2-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
cis-1,2-Dichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromochloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
		- · ·	<u> </u>		1 * •	

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 5 of 10 Report No. RN955246

Lab Reg No.		N13/002197	N13/002198	N13/002199	N13/002200	No. RN955246
Sample Reference	1	TP21 1.4-1.5	TP26 1.1-1.2	TP27 3.0-3.1	TP28 0.9-1.0	1
	Units					Method
Halogenated Aliphatic Hydroca	rbons NMI 1120) Screen		•		•
Carbon tetrachloride	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Trichloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Dibromomethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
cis-1,3-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
trans-1,3-Dichloropropene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,2-Trichloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Tetrachloroethene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,3-Dichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dibromoethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,1,2-Tetrachloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,1,2,2-Tetrachloroethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3-Trichloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dibromo-3-chloropropane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Hexachlorobutadiene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Halogenated Aromatic Hydroca	rbons NMI 1120	Screen			•	
Chlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
2-Chlorotoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
4-Chlorotoluene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,3-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,4-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2-Dichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,4-Trichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3-Trichlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
1,2,3,4-Tetrachlorobenzene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Trihalomethanes NMI 1120 Scr	een				•	
Chloroform	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromodichloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Dibromochloromethane	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Bromoform	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Polycyclic Aromatic Hydrocarbo		1120 Screen	1			1
Naphthalene	mg/kg	< 1	< 1	< 1	< 1	NGCMS_1120
Oxygenated Compounds NMI 1	120 Screen		1	•		1
Acetone	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
2-Butanone (MEK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
2-Hexanone (MBK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
4-Methyl-2-pentanone (MIBK)	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
Methyl tert-Butyl Ether (MTBE)	mg/kg	< 5	< 5	< 5	< 5	 NGCMS_1120
Vinylacetate	mg/kg	< 5	< 5	< 5	< 5	 NGCMS_1120
Other Compounds NMI 1120 S	0 0		1			
Carbon disulfide	mg/kg	< 5	< 5	< 5	< 5	NGCMS_1120
105 Delhi Road, North Ryde	5 5					

Page: 6 of 10 Report No. RN955246

Lab Reg No.		N13/002197	N13/002198	N13/002199	N13/002200	
Sample Reference		TP21 1.4-1.5	TP26 1.1-1.2	TP27 3.0-3.1	TP28 0.9-1.0	
	Units					Method
Other Compounds NMI 11	20 Screen			•		•
Surrogate: DBFM	%REC	110	112	110	105	NGCMS_1120
Surrogate: TOL-D8	%REC	116	114	112	117	NGCMS_1120
Surrogate: 4-BFB	%REC	88	89	90	90	NGCMS_1120
Dates				•		
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	
Date analysed		31-JAN-2013	31-JAN-2013	31-JAN-2013	31-JAN-2013	

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

Lab Reg No.		N13/002197	N13/002198	N13/002199	N13/002200	
Sample Reference		TP21 1.4-1.5	TP26 1.1-1.2	TP27 3.0-3.1	TP28 0.9-1.0	
	Units					Method
Trace Elements						
Total Solids	%	65.3	80.4	70.6	91.9	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

				Page: 7 of 10
				Report No. RN955246
Client :	Environmental & Earth	Sciences NSW	Job No.	: ENVI55/130125
	PO BOX 1519		Quote No.	: QT-01970
	BALLINA NSW 2478		Order No.	:
			Date Sampled	:
			Date Received	: 25-JAN-2013
Attention :	CHRISTINE PITMAN		Sampled By	: CLIENT
Project Name :				
Your Client Ser	vices Manager	: BRIAN WOODWARD	Phone	: (02) 94490151

 Lab Reg No.
 Sample Ref

 N13/002201
 TP29 2.0-2.1

Sample Description SOIL BALLINA JOB 512017 23/01/13

Lab Reg No.		N13/002201	
Sample Reference		TP29 2.0-2.1	
	Units		Method
Monocyclic Aromatic Hydro	carbons NMI 11	20 Screen	
Benzene	mg/kg	< 1	NGCMS_1120
Toluene	mg/kg	<1	NGCMS_1120
Ethylbenzene	mg/kg	< 1	NGCMS_1120
m & p-Xylenes	mg/kg	< 2	NGCMS_1120
o-Xylene	mg/kg	< 1	NGCMS_1120
Styrene	mg/kg	< 1	NGCMS_1120
Isopropylbenzene	mg/kg	< 1	NGCMS_1120
n-Propylbenzene	mg/kg	< 1	NGCMS_1120
1,3,5-Trimethylbenzene	mg/kg	< 1	NGCMS_1120
tert-Butylbenzene	mg/kg	< 1	NGCMS_1120
1,2,4-Trimethylbenzene	mg/kg	< 1	NGCMS_1120
sec-Butylbenzene	mg/kg	< 1	NGCMS_1120
4-IsopropyItoluene	mg/kg	< 1	NGCMS_1120
n-Butylbenzene	mg/kg	< 1	NGCMS_1120
Halogenated Aliphatic Hydr	ocarbons NMI 1	120 Screen	
Chloromethane	mg/kg	< 5	NGCMS_1120
Vinyl chloride	mg/kg	< 2	NGCMS_1120
Bromomethane	mg/kg	< 5	NGCMS_1120
Chloroethane	mg/kg	< 5	NGCMS_1120
Trichlorofluoromethane	mg/kg	< 1	NGCMS_1120
1,1-Dichloroethane	mg/kg	< 1	NGCMS_1120
Dichloromethane	mg/kg	< 1	NGCMS_1120
trans-1,2-Dichloroethene	mg/kg	< 1	NGCMS_1120
1,1-Dichloroethene	mg/kg	< 1	NGCMS_1120
2,2-Dichloropropane	mg/kg	< 1	NGCMS_1120
cis-1,2-Dichloroethene	mg/kg	< 1	NGCMS_1120
Bromochloromethane	mg/kg	< 1	NGCMS_1120
1,1,1-Trichloroethane	mg/kg	< 1	NGCMS_1120
Carbon tetrachloride	mg/kg	< 1	NGCMS_1120
1,1-Dichloropropene	mg/kg	< 1	NGCMS_1120
1,2-Dichloroethane	mg/kg	< 1	NGCMS_1120

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 8 of 10 Report No. RN955246

				Roport i	10.1111/00210
Lab Reg No.		N13/002201			
Sample Reference		TP29 2.0-2.1			
	Units				Method
Halogenated Aliphatic Hydroc	arbons NMI 112	0 Screen	•		•
Trichloroethene	mg/kg	< 1			NGCMS_1120
1,2-Dichloropropane	mg/kg	< 1			NGCMS_1120
Dibromomethane	mg/kg	< 1			NGCMS_1120
cis-1,3-Dichloropropene	mg/kg	< 1			NGCMS_1120
trans-1,3-Dichloropropene	mg/kg	< 1			NGCMS_1120
1,1,2-Trichloroethane	mg/kg	< 1			NGCMS_1120
Tetrachloroethene	mg/kg	< 1			NGCMS_1120
1,3-Dichloropropane	mg/kg	< 1			NGCMS_1120
1,2-Dibromoethane	mg/kg	< 1			NGCMS_1120
1,1,1,2-Tetrachloroethane	mg/kg	< 1			NGCMS_1120
1,1,2,2-Tetrachloroethane	mg/kg	< 1			NGCMS_1120
1,2,3-Trichloropropane	mg/kg	< 1			NGCMS_1120
1,2-Dibromo-3-chloropropane	mg/kg	< 1			NGCMS_1120
Hexachlorobutadiene	mg/kg	< 1			NGCMS_1120
Halogenated Aromatic Hydroca	arbons NMI 1120) Screen			
Chlorobenzene	mg/kg	< 1			NGCMS_1120
Bromobenzene	mg/kg	< 1			NGCMS_1120
2-Chlorotoluene	mg/kg	< 1			NGCMS_1120
4-Chlorotoluene	mg/kg	< 1			NGCMS_1120
1,3-Dichlorobenzene	mg/kg	< 1			NGCMS_1120
1,4-Dichlorobenzene	mg/kg	< 1			NGCMS_1120
1,2-Dichlorobenzene	mg/kg	< 1			NGCMS_1120
1,2,4-Trichlorobenzene	mg/kg	< 1			NGCMS_1120
1,2,3-Trichlorobenzene	mg/kg	< 1			NGCMS_1120
1,2,3,4-Tetrachlorobenzene	mg/kg	< 1			NGCMS_1120
Trihalomethanes NMI 1120 Sc	reen	-			
Chloroform	mg/kg	< 1			NGCMS_1120
Bromodichloromethane	mg/kg	< 1			NGCMS_1120
Dibromochloromethane	mg/kg	< 1			NGCMS_1120
Bromoform	mg/kg	< 1			NGCMS_1120
Polycyclic Aromatic Hydrocarb	ons(volatile) NM	I 1120 Screen			
Naphthalene	mg/kg	< 1			NGCMS_1120
Oxygenated Compounds NMI	1120 Screen	-			
Acetone	mg/kg	< 5			NGCMS_1120
2-Butanone (MEK)	mg/kg	< 5			NGCMS_1120
2-Hexanone (MBK)	mg/kg	< 5			NGCMS_1120
4-Methyl-2-pentanone (MIBK)	mg/kg	< 5			NGCMS_1120
Methyl tert-Butyl Ether (MTBE)	mg/kg	< 5			NGCMS_1120
Vinylacetate	mg/kg	< 5			NGCMS_1120
Other Compounds NMI 1120 S	Screen				
Carbon disulfide	mg/kg	< 5			NGCMS_1120
Surrogate: DBFM	%REC	106			NGCMS_1120
Surrogate: TOL-D8	%REC	115			NGCMS_1120

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 9 of 10 Report No. RN955246

Lab Reg No.		N13/002201		
Sample Reference		TP29 2.0-2.1		
	Units			Method
Other Compounds NMI 1120 S	creen			
Surrogate: 4-BFB	%REC	90		NGCMS_1120
Dates				
Date extracted		31-JAN-2013		
Date analysed		31-JAN-2013		

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

Lab Reg No.		N13/002201		
Sample Reference		TP29 2.0-2.1		
	Units			Method
Trace Elements				
Total Solids	%	86.4		NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

This Report supersedes reports: RN954893 RN955202

Page: 10 of 10 Report No. RN955246

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

			Page: 1 of 4 Report No. RN955248
Client : Environmental & Eart	h Sciences NSW	Job No.	: ENVI55/130125
PO BOX 1519		Quote No.	: QT-01970
BALLINA NSW 2478	3	Order No.	:
		Date Sampled	:
		Date Received	: 25-JAN-2013
Attention : CHRISTINE PITMAN Project Name :		Sampled By	: CLIENT
Your Client Services Manager	: BRIAN WOODWARD	Phone	: (02) 94490151

Lab Reg No.	Sample Ref	Sample Description
N13/002185	TP9 0.5-0.6	SOIL BALLINA JOB 512017 22/01/13
N13/002190	TP13 0.5-0.6	SOIL BALLINA JOB 512017 22/01/13
N13/002195	TP18 06-0.7	SOIL BALLINA JOB 512017 22/01/13

Lab Reg No.		N13/002185	N13/002190	N13/002195	
Sample Reference		TP9 0.5-0.6	TP13 0.5-0.6	TP18 06-0.7	
	Units				Method
Polycyclic Aromatic Hydroca	rbons NMI 1122	2 Screen	•		
Acenaphthylene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Naphthalene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Acenaphthene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Fluorene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Phenanthrene	mg/kg	< 1	< 1	2.4	NGCMS_1122
Anthracene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Fluoranthene	mg/kg	< 1	< 1	2.9	NGCMS_1122
Pyrene	mg/kg	< 1	< 1	3.5	NGCMS_1122
Benz(a)anthracene	mg/kg	< 1	< 1	1.9	NGCMS_1122
Chrysene	mg/kg	< 1	< 1	2.0	NGCMS_1122
Benzo(b,k)fluoranthene	mg/kg	< 2	< 2	2.7	NGCMS_1122
Benzo(a)pyrene	mg/kg	< 1	< 1	2.2	NGCMS_1122
Indeno(1,2,3-cd)pyrene	mg/kg	< 1	< 1	1.2	NGCMS_1122
Dibenz(a,h)anthracene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Benzo(g,h,i)perylene	mg/kg	< 1	< 1	1.2	NGCMS_1122
Phenols NMI 1122 Screen					
Phenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
2-Chlorophenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
2-Methylphenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
3&4-Methylphenol	mg/kg	< 2	< 2	< 2	NGCMS_1122
2-Nitrophenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
2,4-Dimethylphenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
2,4-Dichlorophenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
2,6-Dichlorophenol	mg/kg	< 1	< 1	< 1	NGCMS_1122
4-Chloro-3-methylphenol	mg/kg	< 2	< 2	< 2	NGCMS_1122
2,4,5-Trichlorophenol	mg/kg	< 2	< 2	< 2	NGCMS_1122
2,4,6-Trichlorophenol	mg/kg	< 2	< 2	< 2	NGCMS_1122
2,3,4,6-Tetrachlorophenol	mg/kg	< 2	< 2	< 2	NGCMS_1122
Pentachlorophenol	mg/kg	< 2	< 2	< 2	NGCMS_1122

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 2 of 4 Report No. RN955248

	1		1	1	 NO. NN755240
Lab Reg No.		13/002185	N13/002190	N13/002195	
Sample Reference	TF	9 0.5-0.6	TP13 0.5-0.6	TP18 06-0.7	
	Units				Method
Phthalates NMI 1122 Screen					
Dimethyl phthalate	mg/kg <	1	< 1	< 1	NGCMS_1122
Diethyl phthalate	mg/kg <	1	< 1	< 1	NGCMS_1122
Di-n-butyl phthalate	mg/kg <	1	< 1	< 1	NGCMS_1122
Butyl benzyl phthalate	mg/kg <	1	< 1	< 1	NGCMS_1122
Bis(2-ethylhexyl) phthalate	mg/kg <	2	< 2	< 2	NGCMS_1122
Di-n-octyl phthalate		1	< 1	< 1	NGCMS_1122
Chlorinated Hydrocarbons NM			•		•
2-Chloronaphthalene	mg/kg <	2	< 2	< 2	NGCMS_1122
1,4-Dichlorobenzene	mg/kg <	2	< 2	< 2	NGCMS_1122
1,2-Dichlorobenzene		2	< 2	< 2	NGCMS_1122
1,3-Dichlorobenzene	mg/kg <		< 2	< 2	NGCMS_1122
Hexachlorobenzene	mg/kg <		< 2	< 2	NGCMS_1122
1,2,4-Trichlorobenzene	mg/kg <		< 2	< 2	NGCMS_1122
Hexachloroethane	mg/kg <		< 2	< 2	 NGCMS_1122
Hexachlorocyclopentadiene	0 0	2	< 2	< 2	NGCMS_1122
Hexachloro-1,3-butadiene	mg/kg <		< 2	< 2	NGCMS_1122
Ethers NMI 1122 Screen		-			100110_1122
4-Bromophenyl phenyl ether	mg/kg <	2	< 2	< 2	NGCMS_1122
4-Chlorophenyl phenyl ether	mg/kg <		< 2	< 2	NGCMS_1122
Bis(2-chloroethyl)ether	mg/kg <		< 2	< 2	NGCMS_1122
Bis(2-chloroethoxy)methane	mg/kg <		< 2	< 2	NGCMS_1122
Bis(2-chloroisopropyl)ether	mg/kg <		< 2	< 2	NGCMS_1122
Amines Nitroaromatics & Nitr	0 0		~ 2	12	1000110_1122
Azobenzene	mg/kg <		< 2	< 2	NGCMS_1122
2,4-Dinitrotoluene	mg/kg <		< 2	< 2	NGCMS_1122
2,6-Dinitrotoluene	mg/kg <		< 2	< 2	NGCMS_1122
Nitrobenzene	mg/kg <		< 2	< 2	NGCMS_1122
N-Nitrosodimethylamine	mg/kg <		< 2	< 2	NGCMS_1122
N-Nitrosodiphenylamine	0 0	2	< 2	< 2	NGCMS_1122
N-Nitrosodi-n-propylamine	0 0	2	< 2	< 2	NGCMS_1122
Aniline	mg/kg <		< 2	< 2	NGCMS_1122
4-Chloroaniline		2	< 2	< 2	NGCMS_1122
2-Nitroaniline			< 2	< 2	NGCMS_1122 NGCMS_1122
3-Nitroaniline	8 8	2	< 2	< 2	NGCMS_1122 NGCMS_1122
4-Nitroaniline		2	< 2	< 2	NGCMS_1122 NGCMS_1122
Organochlorine Pesticides NM	0 0	2	< 2	< Z	
		2	. 2		
Aldrin	~ ~	2	< 2	< 2	NGCMS_1122
a-BHC		2	< 2	< 2	NGCMS_1122
b-BHC		2	< 2	< 2	NGCMS_1122
g-BHC (Lindane)		2	< 2	< 2	NGCMS_1122
d-BHC		2	< 2	< 2	NGCMS_1122
4,4 '-DDD		2	< 2	< 2	NGCMS_1122
4,4 '-DDE	mg/kg <	2	< 2	< 2	NGCMS_1122

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 3 of 4 Report No. RN955248

Lab Reg No.		N13/002185	N13/002190	N13/002195	
Sample Reference		TP9 0.5-0.6	TP13 0.5-0.6	TP18 06-0.7]
	Units				Method
Organochlorine Pesticides N	MI 1122 Screen	·			
4,4 '-DDT	mg/kg	< 2	< 2	< 2	NGCMS_1122
Dieldrin	mg/kg	< 2	< 2	< 2	NGCMS_1122
Endosulphan I	mg/kg	< 2	< 2	< 2	NGCMS_1122
Endosulphan II	mg/kg	< 2	< 2	< 2	NGCMS_1122
Endosulfan sulphate	mg/kg	< 2	< 2	< 2	NGCMS_1122
Endrin	mg/kg	< 2	< 2	< 2	NGCMS_1122
Endrin Aldehyde	mg/kg	< 2	< 2	< 2	NGCMS_1122
Heptachlor	mg/kg	< 2	< 2	< 2	NGCMS_1122
Heptachlorepoxide	mg/kg	< 2	< 2	< 2	NGCMS_1122
Organophosphate Pesticide	s NMI 1122 Scre	en			
Dimethoate	mg/kg	< 2	< 2	< 2	NGCMS_1122
Diazinon	mg/kg	< 2	< 2	< 2	NGCMS_1122
Fenitrothion	mg/kg	< 2	< 2	< 2	NGCMS_1122
Malathion	mg/kg	< 2	< 2	< 2	NGCMS_1122
Chlorpyrifos	mg/kg	< 2	< 2	< 2	NGCMS_1122
Ethion	mg/kg	< 2	< 2	< 2	NGCMS_1122
Dates	·	·			
Date extracted		31-JAN-2013	31-JAN-2013	31-JAN-2013	
Date analysed		31-JAN-2013	31-JAN-2013	31-JAN-2013	
Other Compounds NMI 112	22 Screen	·			
Dichlorobenzidine	mg/kg	< 2	< 2	< 2	NGCMS_1122
2-Methylnaphthalene	mg/kg	< 1	< 1	< 1	NGCMS_1122
Isophorone	mg/kg	< 2	< 2	< 2	NGCMS_1122
Benzyl alcohol	mg/kg	< 2	< 2	< 2	NGCMS_1122
Carbazole	mg/kg	< 2	< 2	< 2	NGCMS_1122
Dibenzofuran	mg/kg	< 2	< 2	< 2	NGCMS_1122
Surrogate: PHENOL-D6	%REC	59	52	75	NGCMS_1122
Surrogate: 1,2-DCB-D4	%REC	77	88	120	NGCMS_1122
Surrogate: TER-D14	%REC	106	115	132	NGCMS_1122

 \mathcal{O}

Luke Baker, Analyst Organics - NSW Accreditation No. 198

4-FEB-2013

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Page: 4 of 4 Report No. RN955248

					Report No. RN 955240
Lab Reg No.		N13/002185	N13/002190	N13/002195	
Sample Reference		TP9 0.5-0.6	TP13 0.5-0.6	TP18 06-0.7	
	Units				Method
Trace Elements					
Total Solids	%	75.2	80.7	86.7	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

4-FEB-2013

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN954893 RN955202

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

National Measurement Institute

QUALITY ASSURANCE REPORT

Client:

Environmental & Earth Sciences NSW

NMI QA Report No:

ENVI55/130125

Sample Matrix: Solid

Analyte Method LOR Blank Sample Duplicates Recoveries Duplicate RPD LCS Matrix Spike Sample mg/kg mg/kg mg/kg mg/kg % % % Organics Section N13/002183 N13/002183 BTEX Benzene NGCMS_1121 0.5 < 0.5 <0.5 93 105 < 0.5-Toluene NGCMS_1121 0.5 < 0.5 < 0.5 < 0.5 92 103 _ NGCMS 1121 0.5 <0.5 Ethyl Benzene < 0.5 < 0.5 94 99 m, p - Xylene NGCMS_1121 106 1 <1 <1 <1 96 o-Xylene NGCMS 1121 0.5 <0.5 <0.5 <0.5 89 94 N13/002183 TPH N13/002183 93 NGCMS_1121 TPH C6-C9 25 <25 <25 <25 102 -N13/002178 N13/002180 TPH <50 107 NGCMS_1112 50 <50 80 TPH C10-C14 <50 -NGCMS_1112 100 <100 <100 102 95 TPH C15-C28 <100 NGCMS_1112 NGCMS_1121 TPH C29-C36 100 <100 <100 # 120 18 99 Surrogate: TOL-D8 103 102 1.0 100 N13/002178 PAH N13/002190 NGCMS 1111 0.5 <0.5 <0.5 105 < 0.5 Naphthalene -101 NGCMS 1111 0.5 < 0.5 <0.5 < 0.5 Acenaphthylene NGCMS 1111 Acenaphthene 0.5 < 0.5 <0.5 < 0.5 _ NGCMS 1111 126 Fluorene 0.5 < 0.5 < 0.5 <0.5 104 NGCMS 1111 0.5 <0.5 <0.5 <0.5 108 111 Phenanthrene NGCMS_1111 0.5 <0.5 <0.5 <0.5 Anthracene _ --NGCMS_1111 Fluoranthene 0.5 < 0.5 < 0.5 <0.5 ---NGCMS_1111 0.5 <0.5 <0.5 <0.5 Pyrene ---NGCMS_1111 0.5 < 0.5 <0.5 <0.5 Benz[a]anthracene --NGCMS_1111 0.5 <0.5 < 0.5 <0.5 100 69 Chrysene -NGCMS_1111 <1 Benzo[b]&[k]fluoranthene 1 <1 <1 Benzo[a]pyrene NGCMS_1111 0.5 < 0.5 <0.5 <0.5 _ 104 108 NGCMS_1111 Indeno[1_2_3-cd]pyrene 0.5 < 0.5 <0.5 <0.5 -_ NGCMS_1111 90 0.5 < 0.5 <0.5 < 0.5 110 Dibenz[ah]anthracene _ NGCMS_1111 0.5 <0.5 < 0.5 <0.5 Benzo[ghi]perylene NGCMS_1111 Surrogate: TER-D14 97 93 4.2 95 116 -N13/002178 N13/002190 Phenols Phenol NGCMS_1111 1 108 61 <1 <1 <1 -2-Chlorophenol NGCMS_1111 1 <1 <1 <1 ---2-Methyl phenol NGCMS_1111 1 <1 <1 <2 ---3 & 4-methyl phenol NGCMS_1111 2 <2 106 103 <2 <1 -NGCMS_1111 2-Nitrophenol 1 <1 <1 <1 ---NGCMS_1111 2,4-Dimethyl phenol 1 <1 <1 <1 --NGCMS_1111 2,4-Dichlorophenol 1 <1 <1 <1 2,6-Dichlororphenol NGCMS_1111 _ 103 76 1 <1 <1 <1 NGCMS_1111 4-Chloro-3-methyl phenol 2 <2 <2 <2 --_ NGCMS_1111 2,4,5-Trichlorophenol 2 <2 <2 <2 _ _ -2,4,6-Trichlorophenol NGCMS_1111 <2 2 <2 _ -<2 -2,3,4,6-Tetrachlorophenol <2 NGCMS_1111 2 <2 <2 _ _ Pentachlorophenol NGCMS_1111 114 59 2 <2 <2 <2 Surrogate: PHENOL-D6 NGCMS_1111 109 123 12 104 70

TPH C29-C36 was detected in Sample N13/002178 at just below the Limit of Reporting.

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 70-130% (BTEX and TPH C_6 - C_9); 50-150% (PAH and TPH C10-C36); 40-150% (Phenols) Maximum acceptable RPDs on spikes and duplicates is 40%.

Date:

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Danny Slee Organics Manager, NMI-North Ryde 4/02/2013

www.measurement.gov.au

Page 1 of 5

ENVI55/130125

QUALITY ASSURANCE REPORT

Client:

Environmental & Earth Sciences NSW

NMI QA Report No:

Sample Matrix: Solid

Sample Duplicates Analyte Method LOR Blank Recoveries Matrix Spike Sample Duplicate RPD LCS mg/kg mg/kg mg/kg mg/kg % % % Organics Section **Monocyclic Aromatic Hydrocarbons** N13/002191 N13/002191 NGCMS_1120 1 <1 86 Benzene <1 93 <1 -NGCMS_1120 <1 Toluene 1 <1 <1 101 96 _ NGCMS_1120 Ethylbenzene 1 <1 <1 <1 _ -m,p-Xylene NGCMS_1120 2 <2 <2 <2 _ -o-Xylene NGCMS 1120 1 <1 <1 <1 _ Styrene NGCMS_1120 1 <1 <1 <1 _ --Isopropylbenzene NGCMS_1120 1 <1 <1 <1 ---NGCMS_1120 n-Propylbenzene <1 <1 <1 1 ---1,3,5-Trimethylbenzene NGCMS_1120 <1 1 <1 <1 --tert-Butylbenzene NGCMS_1120 <1 1 <1 <1 ---NGCMS_1120 NGCMS_1120 NGCMS_1120 NGCMS_1120 1,2,4-Trimethylbenzene <1 <1 <1 1 sec-Butvlbenzene 1 <1 <1 <1 _ 4-Isopropyltoluene 1 <1 <1 <1 -_ NGCMS_1120 1 n-Butylbenzene <1 <1 <1 _ -_ Halogenated Aliphatic Hydrocarbons 2 NGCMS_1120 <2 <2 <2 Chloromethane _ -NGCMS 1120 5 <5 <5 <5 Vinyl chloride ---NGCMS 1120 5 <5 <5 <5 Bromomethane ---Chloroethane NGCMS_1120 5 <5 <5 <5 -_ -Trichlorofluoromethane NGCMS_1120 1 <1 <1 <1 --NGCMS_1120 96 85 1,1-Dichloroethene 1 <1 <1 <1 -<1 NGCMS_1120 1 <1 <1 Dichloromethane ---NGCMS_1120 trans-1,2-Dicloroethene 1 <1 <1 <1 ---NGCMS_1120 1,1-Dichloroethane 1 <1 <1 <1 ---NGCMS_1120 NGCMS_1120 NGCMS_1120 NGCMS_1120 2,2-Dichloropropane <1 1 <1 <1 cis-1,2-Dichloroethene 1 <1 <1 <1 . Bromochloromethane 1 <1 <1 <1 _ _ -NGCMS_1120 <1 1,1,1-Trichloroethane 1 <1 <1 _ _ NGCMS_1120 Carbon tetrachloride <1 1 <1 <1 -_ -NGCMS_1120 1,1-Dichloropropene 1 <1 <1 <1 ---NGCMS_1120 1,2-Dichloroethane 1 <1 <1 <1 -Trichloroethene NGCMS_1120 95 87 1 <1 <1 <1 _ NGCMS_1120 1,2-Dichloropropane 1 <1 <1 <1 _ -NGCMS_1120 Dibromomethane <1 1 <1 <1 --cis-1,3-Dichloropropene NGCMS_1120 1 <1 <1 <1 _ -trans-1,3-Dichloropropene NGCMS_1120 1 <1 <1 <1 ---NGCMS_1120 1,1,2-Trichloroethane 1 <1 <1 <1 ---NGCMS_1120 NGCMS_1120 Tetrachloroethene 1 <1 <1 <1 -1,3-Dichloropropane <1 <1 _ 1 <1 NGCMS_1120 1,2-Dibromoethane 1 <1 <1 <1 --1,1,1,2-Tetrachloroethane NGCMS_1120 1 <1 <1 <1 _ _ <1 1,1,2,2-Tetrachloroethane NGCMS_1120 1 <1 <1 _ _ -NGCMS_1120 1,2,3-Trichloropropane 1 <1 <1 <1 _ --1,2-Dibromo-3-chloropropane NGCMS_1120 1 <1 <1 <1 -_ -Hexachlorobutadiene NGCMS_1120 1 <1 <1 <1 --_

National Measurement Institute

QUALITY ASSURANCE REPORT

Analyte	Method	LOR	Blank	Sam	ple Duplicate	es	Rec	overies
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
Organics Section								
Halogenated Aromatic Hydro	carbons			N13/002191				N13/002191
Chlorobenzene	NGCMS_1120	1	<1	<1	<1	-	99	96
Bromobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
2-Chlorotoluene	NGCMS_1120	1	<1	<1	<1	-	-	-
4-Chlorotoluene	NGCMS_1120	1	<1	<1	<1	-	-	-
1,3-Dichlorobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
1,4-Dichlorobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
1,2-Dichlorobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
1,2,4-Trichlorobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
1,2,3-Trichlorobenzene	NGCMS_1120	1	<1	<1	<1	-	-	-
Trihalomethanes	NGCMS_1120	1	<1	<1	<1	-	-	-
Chloroform	NGCMS_1120	1	<1	<1	<1	-	91	90
Bromodichloromethane	NGCMS_1120	1	<1	<1	<1	-	-	-
Dibromochloromethane	NGCMS_1120	1	<1	<1	<1	-	-	-
Bromoform	NGCMS_1120	1	<1	<1	<1	-	-	-
PAH (volatile)								
Naphthalene	NGCMS_1120	1	<1	<1	<1	-	-	-
Oxygenated Compounds								
Acetone	NGCMS_1120	5	<5	<5	<5	-	-	-
	NGCMS_1120	5	<5	<5	<5	-	-	-
2-Butanone (MEK)	NGCMS_1120	5	<5	<5	<5	-	-	-
4-Methyl-2-pentanone (MIBK)		5	<5	<5	<5	-	-	-
	NGCMS_1120	5	<5	<5	<5	-	-	-
Methyl tert-Butyl Ether (MTBE)	NGCMS_1120	5	<5	<5	<5	-	-	-
Sulfonated Compounds								
Carbon disulfide	NGCMS_1120	5	<5	<5	<5	-	-	-
Surrogate: DBFM	NGCMS_1120	-	-	116	103	12	100	105
Surrogate: TOL-D8	NGCMS_1120	-	-	94	106	12	107	106
Surrogate: 4-BFB	NGCMS_1120	-	-	96	97	1.0	107	113

Results expressed in percentage (%) or mg/kg wherever appropriate. Acceptable Spike recovery is 70-130%

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference

Signed:

Date:

sle

Danny Slee Organics Manager, NMI-North Ryde 4/02/2013

ENVI55/130125

QUALITY ASSURANCE REPORT

Client:

Environmental & Earth Sciences NSW

NMI QA Report No:

Sample Matrix:

Solid

Analyte	Method	LOR	Blank	Sam	ple Duplicate	es	Rec	overies
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
PAHs				N13/002178				N13/002190
Naphthalene	NGCMS 1122	1	<1	<1	<1	-	105	101
Acenaphthylene	NGCMS_1122	1	<1	<1	<1	-	-	-
Acenaphthene	NGCMS_1122	1	<1	<1	<1	-	-	-
Fluorene	NGCMS_1122	1	<1	<1	<1	-	104	126
Phenanthrene	NGCMS_1122	1	<1	<1	<1	-	108	111
Anthracene	NGCMS_1122	1	<1	<1	<1	-	-	-
Fluoranthene	NGCMS_1122	1	<1	<1	<1	-	-	-
Pyrene	NGCMS_1122	1	<1	<1	<1	-	_	-
Benz[a]anthracene	NGCMS_1122	1	<1	<1	<1	-	_	-
Chrysene	NGCMS_1122	1	<1	<1	<1	-	100	69
Benzo[b,k]fluoranthene	NGCMS_1122	2	<2	<2	<2	-	-	-
Benzo[a]pyrene	NGCMS_1122	1	<1	<1	<1	-	104	108
Indeno[1,2,3-cd]pyrene	NGCMS_1122	1	<1	<1	<1	-	104	100
Dibenz[a,h]anthracene	NGCMS_1122	1	<1	<1	<1	-	110	90
	NGCMS_1122	1	<1	<1	<1	-	110	
Benzo[g,h,i]perylene Phenols	NGCING_1122	-	<1	N13/002178	<1	-	-	N13/002190
Phenol	NGCMS_1122	1	<1	<1	<1	-	108	61
2-Chlorophenol	NGCMS_1122	1	<1	<1	<1		106	01
					<1	-	-	-
2-Methyl phenol	NGCMS_1122 NGCMS_1122	1	<1 <2	<1 <2	<2 <1	-	- 106	103
3 & 4-methyl phenol							106	103
2-Nitrophenol	NGCMS_1122	1	<1	<1	<1	-	-	-
2,4-Dimethyl phenol	NGCMS_1122	1	<1	<1	<1	-	-	-
2,4-Dichlorophenol	NGCMS_1122	1	<1	<1	<1	-	-	-
2,6-Dichlororphenol	NGCMS_1122	1	<1	<1	<1	-	103	76
4-Chloro-3-methyl phenol	NGCMS_1122	2	<2	<2	<2	-	-	-
2,4,5-Trichlorophenol	NGCMS_1122	2	<2	<2	<2	-	-	-
2,4,6-Trichlorophenol	NGCMS_1122	2	<2	<2	<2	-	-	-
2,3,4,6-Tetrachlorophenol	NGCMS_1122	2	<2	<2	<2	-	-	-
Pentachlorophenol	NGCMS_1122	2	<2	<2	<2	-	114	59
Phthalates								
Dimethylphthalate	NGCMS_1122	1	<1	<1	<1	-	-	-
Diethylphthalate	NGCMS_1122	1	<1	<1	<1	-	-	-
Di-n-butylphthalate	NGCMS_1122	1	<1	<1	<1	-	-	-
Butyl benzyl phthalate	NGCMS_1122	1	<1	<1	<1	-	-	-
Bis(2-ethylhexyl)phthalate	NGCMS_1122	2	<2	<2	<2	-	-	-
Di-n-octyl phthalate	NGCMS_1122	1	<1	<1	<1	-	-	-
Chlorinated Hydrocarbons								
2-Chloronaphthalene	NGCMS_1122	2	<2	<2	<2	-	-	-
1,4-Dichlorobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
1,2-Dichlorobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
1,3-Dichlorobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
Hexachlorobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
1,2,4-Trichlorobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
Hexachloroethane	NGCMS_1122	2	<2	<2	<2	-	-	-
Hexachlorocyclopentadiene	NGCMS_1122	2	<2	<2	<2	-	-	-
Hexachloro-1,3-butadiene	NGCMS_1122	2	<2	<2	<2	-	-	-
Ethers								
4-Bromophenyl phenyl ether	NGCMS_1122	2	<2	<2	<2	-	-	-
4-Chlorophenyl phenyl ether	NGCMS_1122	2	<2	<2	<2	-	-	-
Bis(2-chloroethyl) ether	NGCMS_1122	2	<2	<2	<2	-	-	-
Bis(2-chloroethoxy)methane	NGCMS_1122	2	<2	<2	<2	-	-	-
Bis(2-chloroisopropyl)ether	NGCMS_1122	2	<2	<2	<2	-	-	-
· · · · · · · · · · · · · · · · · · ·					-	I	<u>.</u>	<u>.</u>

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

QUALITY ASSURANCE REPORT

Analyte	Method	LOR	Blank	Sam	ple Duplicate	s	Red	coveries
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
Amines, Nitroaromatics & Ni	trosamines							
Azobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
2,4-Dinitrotoluene	NGCMS_1122	2	<2	<2	<2	-	-	-
2,6-Dinitrotoluene	NGCMS_1122	2	<2	<2	<2	-	-	-
Nitrobenzene	NGCMS_1122	2	<2	<2	<2	-	-	-
N-Nitrosodimethylamine	NGCMS_1122	2	<2	<2	<2	-	-	-
N-Nitrosodiphenylamine	NGCMS_1122	2	<2	<2	<2	-	-	-
N-Nitrosodi-n-propylamine	NGCMS_1122	2	<2	<2	<2	-	-	-
Aniline	NGCMS_1122	2	<2	<2	<2	-	-	-
4-Chloroaniline	NGCMS_1122	2	<2	<2	<2	-	-	-
2-Nitroaniline	NGCMS_1122	2	<2	<2	<2	-	-	-
3-Nitroaniline	NGCMS_1122	2	<2	<2	<2	-	-	-
4-Nitroaniline	NGCMS_1122	2	<2	<2	<2	-	-	-
OC Pesticides								
Aldrin	NGCMS_1122	2	<2	<2	<2	-	-	-
alpha-BHC	NGCMS_1122	2	<2	<2	<2	-	-	-
beta-BHC	NGCMS_1122	2	<2	<2	<2	-	-	-
gamma-BHC	NGCMS_1122	2	<2	<2	<2	-	-	-
delta-BHC	NGCMS_1122	2	<2	<2	<2	-	-	-
4,4'-DDD	NGCMS_1122	2	<2	<2	<2	-	-	-
4,4'-DDE	NGCMS_1122	2	<2	<2	<2	-	-	-
4,4'-DDT	NGCMS_1122	2	<2	<2	<2	-	-	-
Dieldrin	NGCMS_1122	2	<2	<2	<2	-	-	-
a-Endosulphan	NGCMS_1122	2	<2	<2	<2	-	-	-
b-Endosulphan	NGCMS_1122	2	<2	<2	<2	-	-	-
Endosulphan sulphate	NGCMS_1122	2	<2	<2	<2	-	-	-
Endrin	NGCMS_1122	2	<2	<2	<2	-	-	-
Endrin aldehyde	NGCMS_1122	2	<2	<2	<2	-	-	-
Heptachlor	NGCMS_1122	2	<2	<2	<2	-	-	-
Heptachlorepoxide	NGCMS_1122	2	<2	<2	<2	-	-	-
OP Pesticides								
Dimethoate	NGCMS_1122	2	<2	<2	<2	-	-	-
Diazinon	NGCMS_1122	2	<2	<2	<2	-	-	-
Fenitrothion	NGCMS_1122	2	<2	<2	<2	-	-	-
Malathion	NGCMS_1122	2	<2	<2	<2	-	-	-
Chlorpyrifos	NGCMS_1122	2	<2	<2	<2	-	-	-
Ethion	NGCMS_1122	2	<2	<2	<2	-	-	-
Others								
Dichlorobenzidine	NGCMS_1122	2	<2	<2	<2	-	-	-
2-Methylnaphthalene	NGCMS_1122	1	<1	<1	<1	-	-	-
Isophorone	NGCMS_1122	2	<2	<2	<2	-	-	-
Benzyl alcohol	NGCMS_1122	2	<2	<2	<2	-	-	-
Carbazole	NGCMS_1122	2	<2	<2	<2	-	-	-
Dibenzofuran	NGCMS_1122	2	<2	<2	<2	-	-	-
Surrogate PHENOL-D6	NGCMS_1122	-	-	109	123	12	104	70
Surrogate 1,2-DCB-D4	NGCMS_1122	-	-	55	60	7.9	92	84
Surrogate TER-D14	NGCMS_1122	-	-	92	93	1.0	95	116

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 40-150%

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

10,

Danny Slee Organics Manager, NMI-North Ryde 4/02/2013

Date:

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Project Manager: Christine Pitman Sampler: C Pitman Sampler: C Pitman	itman	Sampler: C Pitman	Site Location: Ballina Analysis Required
Sample ID/ Depth		PAH BTEX	-0
	Anticipa reading Date san Time san	TPH	82 82 40
-101 0.0-0.1	22/1/13		N13(002176
TP1 6-5-6-6	22/13	>	/
-		/	1
-(p 2 0 9 - 10		1	/
0-1-0		/	/
t. o			/
31.4.		7	
0-1-0		1	N13/00217
0		/	
1		7	
0. [- 0		1	N13/002178
0.9			
0.3		7	V N13/002179
		~	N13/002180
1.1		1 1	N13/002181
TP7 0.1-6.3			
- 5.0			N13/002182
708 0.2-0.3		1 ×	N13/00218
0.6-			
1	4	7	
TOTAL		20	
Turn Around (circle):	NORMAL / 8 DAYS / 48	IRS / 24 HRS (confirm with lab	NORMAL 13 DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required)
Comments/ Instructions:	- Warning: san	samples may contain gl	glass + sharp items
	Name C. PITMAN	Signature	Date Time 12.60

ų

-

TCP 0.5 0.4115 N13(0022183) TCP 0.5 0.4 0.5 0.4 TCP 0.5 0.4 0.5 0.4 0.5 TCP 0.5 0.4 0.5 0.4 0.5 0.4 TCP 0.5 0.4 0.5 0.4 0.5 0.4 0.5 TCP 0.5 0.5 0.4 0.5 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.0022183 0.4 0.4 0.4 0.0022183 0.4 <th>Auticipated Result (PID)//EC</th>	Auticipated Result (PID)//EC
12 - 1-3 1<	1 -10-1-0.2
I-2 - I-3 Integration I-0.2 Integration I-0.3 Integration I-2 - I-3 Integration I-1 - I-2 Integration I-2 - I-3 Integration I-2 - I-3 Integration I-2 - I-3 Integration I-2 - I-3 Integration I-2 - I-12 Integration I-2 - I-12 Integration I-2 - I-12 Integration I-2 - I-12 Integration I-2 - I-13 Integration I-2 - I-14 Integration I-2 - I-15 Integration I-2 - I-15 Integration I-2 - I	1 TP7 0.5-0.6
I-02 N13(002186) I-0 N13(002186) I-2-1-3 N13(002186) I-2-1-3 N13(002188) I-1-12 N13(002188) I-2-1-3 N13(002189) I-2-1-3 N13(002189) I-2-1-3 N13(00219) I-1-1-2 N13(00219) I-2-1-3 N13(00219) I-2-1-3 N13(002219) I-1-1-2 N13(002219) I-1-1-2 N13(002219) I-1-1-2 N13(002219) I-1-1-2 N13(002219) I-1-1-3 N13(002219) I-1-1-3 N13(002219) I-1-1-3 N13(002219) I-1-1-3 I-1-1-1	1.1
Bit O N13(0002136) 1:2-1:3 N13(0002136) 1:2-1:3 N13(0002136) 0:5-0:6 N13(0002136) 0:5-0:6 N13(0002136) 1:2-1:2 N13(0002136) 0:5-0:6 N13(0002136) 0:5-0:6 N13(0002136) 1:2-1:2 N13(0002136) 0:5-0:6 N13(0002136) 1:2-1:2 N13(0002136) 0:2-0:3 N13(0002136) 0:2-0:3 N13(0002137) 0:2-0:3 N13(0002137) 0:2-0:3 N13(0002131) 0:2-0:3 N13(000213) 0:2-0:3 N13(000213) <td>L TP10 6.1-0.7</td>	L TP10 6.1-0.7
1.4 1.5 1.4 1.5 0.7 -0.8 1.12 1.2 1.2 -0.3 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.5 -0.6 1.13(002,18,7) 0.5 -0.6 1.13(002,18,7) 0.5 -0.6 1.13(002,18,7) 0.5 -0.6 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.4 -0.7 1.13(002,18,7) 0.5 -0.7 1.13(002,18,7) 0.7 -0.7 1.13(002,18,7) 0.7 -0.7 1.13(002,18,7) 0.7 -0.7 1.13(002,18,7) 0.7 -0.7 1.13(002,11,7) <	V# 110 04-0.5
1:4-1:5 N13(002,187, N) 1:2-1:3 N13(002,187, N) 0:4-0:7 N13(002,187, N) 0:5-0:6 N13(002,189, N) 0:5-0:6 N13(002,190, N) 0:5-0:6 N13(002,190, N) 0:5-0:6 N13(002,190, N) 0:5-0:7 N13(002,190, N) 0:1-1:2 N13(002,191, N) 0:1-1:2 N13(002,191, N) 0:1-1:2 N13(002,191, N) Num N Num N Num N Num N N N N	
0.7 - 0.8 N13(002188) 1.2 - 0.3 N13(002188) 0.6 - 0.7 N13(002189) 0.5 - 0.6 N13(002189) 0.5 - 0.6 N13(002189) 0.5 - 0.6 N13(002189) 0.7 - 0.3 N13(002189) 0.7 - 0.3 N13(002189) 0.7 - 0.3 N13(002189) 0.7 - 0.3 N13(002191) 0.7 - 0.3 N13(002191) 0.7 - 0.3 N13(002191) 0.7 - 0.3 N13(002191) 0.7 - 0.5 N13(0022191) 0.7 - 0.5 N13(0022191) NORMAL IS DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) shuchors: N13(002191) Name N13(002191) Name N13(002191) Name N13(002191) Name N13(002191) Name N13(002191)	
1:2-1:3 N13(002187 0:6-0:7 N13(002187 0:5-0:6 N13(002189 0:5-0:6 N13(002191 0:2-0:3 N13(002191 0:2-0:4 N13(002191 0:2-0:5 N13(002191 1:2-1:4 N13(002191 NORMAL IS DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) shuctions: Name Name Name	
#.2 - 0.3 N13(002188 0.6 - 0.7 N13(002188 0.7 - 0.6 N13(002180 1.2 - 1.3 N13(002190 0.2 - 0.3 N13(002190 0.4 - 0.5 N13(002190 0.4 - 0.5 N13(002190 0.4 - 0.5 N13(002190 0.4 - 0.5 N13(002190 1.2 - 1.4 N13(002190 0.4 - 0.5 N13(002190 1.2 - 1.4 N13(002191 0.4 - 0.5 N13(002191 1.2 - 1.4 N13(002191 0.4 - 0.5 N13(002191 1.1 - 1.2 N13(002191 0.4 - 0.5 N13(002191 1.1 - 1.2 N13(002191 1.1 - 1.2 N13(002191 1.1 - 1.2 N13(002191 1.2 - 1.4 N13(002191 1.1 - 1.2 N13(002191 1.1 - 1.2 N13(002191 1.1 - 1.2 N13(002191 1.2 - 1.4 N13(11000000000000000000000000	
0.6 - 0.7 N13(002,188 0.5 - 0.6 N13(002,189 1.1 - 1.2 N13(002,189 0.2 - 0.3 N13(002,191 0.4 - 0.5 N13(002,191 1.1 - 1.2 N13(002,191 0.4 - 0.5 N13(002,191 1.2 - 1.4 N13(002,191 1.2 - 1.4 N13(002,191 1.2 - 1.4 N13(002,191 1.2 - 1.4 N13(002,191 Norwall is DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) shuctions: N11/1/3 Name N11/1/3 1.2 - 0.5 N11/1/3	2 1.2
0.5 -0.6 11 12 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 14 15 14	0.6 -
0.5 -0.6 N13/0021190 0.5 -0.6 N13/0021190 0.2 -0.3 N13/0021190 1.1 -1.2 N13/0021190 1.1 -1.2 N13/0021190 1.2 1.4 1.3 1.2 1.4 1.4 1.2 1.4 1.5 1.2 1.4 1.5 1.2 1.4 1.5 1.2 1.4 1.4 1.2 1.4 1.4 1.2 1.4 1.5 1.2 1.4 1.5 1.2 1.4 1.4 1.2 1.5 1.4 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.3 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.7 1.5 1.5 1.7 1.5 1.5 1.7<	1-1-
I-1-12 I-2-0-3 I-1-1-2 I-1-1-2 0-2-0-3 I-1-1-2 I-1-1-2 I-1-1-2 0-4-0-5 I-1-1-2 I-1-1-2 I-1-1-2 I-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 I-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 I-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 II-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 II-1-1-2 I-1-1-2 II-1-1-2 II-1-1-2 II-1-1-2 I-1	0.5
0.5 - 0.6 N12 - 1.3 N130002191 0.2 - 0.3 N1310002191 1.1 - 1.2 N1310002191 1.2 - 1.4 Image: Confirm with lab in advance if quick turn-around is required) (circle): NORMAL / 3 DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) structions: Name Value Image: C. P. / TAYPA N Name Signature Value Image: C. P. / TAYPA N Name Signature Value Image: C. P. / TAYPA N	
I: 2 - 1:3 International internatione internatione internatione international inte	0.5-
0:2 - 0:3 N130022191 1:1-1:2 N130022191 0:4-6:5 N0RMAL 13 DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) structions: Normal 13 DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) Name C. P IT MA N Signature 3.4 // //3 X4 // //3 12.00	1.2 -
I-1-1-2 I-2-1-1 Interface	0.2
I.2 - I. ⁴ Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) structions: Include Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) Include Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) Include Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) Include Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) Include Image: I a DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) Include Image: I a DAYS / 48 HRS /	1-1-
I.2 - L*T Image: Superior of the second se	0.4-
(circle): Normal / 3 DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required) structions: Name Name C_P iT MPA N Stignature 24 ////3 Value 24 ////3	1
(circle): (NORMAL I 3 DAYS I 48 HRS I 24 HRS (confirm with lab in advance if quick turn-around is required) structions: Name Name C P I TWP N Signature C P I TWP N Signature Signature C P I TWP N Signature	
hice by: CPITANAN Signature	Turn Around (circle):
hice by: CPITMPAN Signature Date 21/1/3	
	ffice by:

Sent off Site/Office by:		Turn Around (circle): Comments/ Instructions:	TOTAL	1 1120 2.0-21		1 7019 0-6-0-7	0.2-0.	~~	1 7018 0-6-0-7		1 7117 1-2-1-3	- 1 to17 03-	- 6-1 91d1 1	1 70% 1.0-1.	1 TRID 8-6-0.2	1 693	1 572		1 7831 6.4-	- 0-6	1 Th25 0.4-	1 71 24 0.0 -0.2	1 7023 0.6-	No. of samples Sample ID/ Depth		Project Manager: Christine Pitman
Name		NORMA	-	-21	2-1	1.0	5	t·1	1-0	-0.2	1:3	10.4	20	-	2				-9-5	-0.7	2.0	-0.2	1.0	Ant,cipated Result (reading	PIDYEC	ine Pitman
ITMAN		3 DAYS I		-										, H.	23/117	24/12	20/1/13	22/1/13				22/115	22/1/13	Datu sampled		
		18 HRS / 24 HI	10	1	1	1	1	1	1	1.	1	1	1	1	1	/	/	1	1	-	/	1	1	Tim 3 sampled Sol	Sample Matrix	Sample
Signature		RS (confirm v		-												1	5	_		_				Sectiment		Sampler: C Pitman
ľ		vith lab in adv		5					-							<		<						ТРН/ВТ Ц 8260	X	
La Date		ance if quick tu			1	1	1	1		1	1	/	1	/	1				1	1	/	/	1	8270 HOLD	Analysia	Site Location:
and 11/13		NORMAL 3 DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required)		LN					N							N13		N13							Analysis Required	11
Time 12.00				N13/002196					N13/002195							N13/002194		N13/002192								Ballina
Phone: (02) 6686 9744 Fax: (02) 6686 9744 PO Box 1519 Ballina NSW 2478	Cc: report to (email address):	Lab Quotation No. (if applicable):															N13/002193							Sample-specific instructions/ notes		Sheet: 3 of 5
ENVIRONMENTAL EARTH SCIENCES					Inter Inter	than 162	2 5 JAN 201	NECENY	1000000000																	

	No. of samples Project Manager: Christine Pitman
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TPI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
y_{1} $(1) - 1 \cdot 2$ $y_{1}^{*} / f_{1}^{*} 3$. . y_{2} $2 \cdot 2 \cdot 2 \cdot 1$ $y_{1}^{*} / f_{1}^{*} 3$. . . y_{2} $2 \cdot 2 \cdot 1 \cdot 2$ $y_{1}^{*} / f_{1}^{*} 3$ y_{2} $2 \cdot 2 \cdot 1 \cdot 2$ $y_{1}^{*} / f_{1}^{*} 3$ y_{1} $y_{1}^{*} / f_{1}^{*} 3$ y_{1} $y_{1}^{*} / f_{1}^{*} 3$ $y_{1}^{*} / f_{1}^{*} 3$ $y_{1}^{*} / f_{1}^{*} 3$ $y_{1}^{*} / f_{1}^{*} / f_{1}^{*} 3$. <	
2b $2i0-2i1$ $23i/13$ 27 $15-1i6$ $25i/13$ 11 27 $3:0-2i1$ $23i/13$ 11 4 $0:0-0i1$ $23i/13$ 11 11 8 $0:q-0i1$ $23i/13$ 11 11 8 $0:q-0i1$ $23i/13$ 113 11 8 $0:q-0i1$ $23i/13$ 113 113 113 10 $23i/13$ 113 113 113 113 10 $23i/13$ 113 113 113 113 12 $20:11$ $23i/13$ 113 113 113 12 $0:0-0i1$ $23i/13$ 113 113 113 113 12 $0:0-0i1$ $23i/13$ 113 113 113 113 12 $0:0-0i1$ $23i/13$ 113 113 113 113 113 12 $0:0-0i1$ $23i/13$ 113 113 113 113 113 113 113	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6.0-01 23/1/3 V N13/0022 2 0.0-01 23/1/3 V N13/0022 4 0.0-01 23/1/3 V N13/0022	
2 0.0-01 23/1/13 3 0.0-01 23/1/13 4 0.0-01 23/1/13 4 0.0-01 23/1/13	8.0.
4 8.0-01	0.0
	6.0 - 0
	TOTAL
	Name Sent off Site/Office by:

MF J4 Drain of Custody 9 Octobert 2011 Version 8

Sample Sample Sample Sample Sample Sample Sample	<u> </u>						
Sample (D) Depth 5555 0 • 0 - 0 - 1 7.026 0 • 1 - 0 · 2 556 0 • 0 - 0 · 1 558 0 • 0 - 0 · 1 558 0 • 0 - 0 · 1 704 0 · 1 - 0 · 2 23 73 73 73 73 73 73 73 73 73 73 73 73 73			X				
555 0.0-01 24 7826 0.0-01 24 556 0.0-01 24 558 0.0-01 20 20 21 22 20 29 29 29 29 29 29 29	pejdures runj	asiaW TPH / PA	0228 0928 249/H01	Gran		Sample-specific instructional notes	
20 0.1+0.2 23 6 6.0-0.1 122 23 212 23 212 23 212 23 212 23		1			N13/002203		
8.0-0.1 25 0.0-0.1 23 44 23	113						
0.0-0.1 23 4 0 0 - 0 - 1 23 4 23	1 51				N13/002204		
1.0-0.0	113						
Hea 561	1113						
	13	7			N13/002205		
Turn Around (circle): NORMAL 3 D Comments/ Instructions:	DAYS / 48 HRS /	24 HRS (confirm v	<i>Q</i> 10 9 3 ∎ with lab in advance	NORMAK / 3 DAYS / 48 HRS / 24 HRS (confirm with lab in advance if quick turn-around is required)		Lab Quotation No. (<i>if applicable</i>): Send report to (<i>email address</i>): Cc: report to (<i>email address</i>):	
Sent off Site/Office by:	North	Signatur	.0	Date 24/11/5	Time 2.00	Phone. (02) 6686 9744 Fax (02) 6686 9744 PO Box 1519 Ballina NSW 2478	ENVIRONMENTAL EARTH SOLENCES

512017

Environmental Division

	CERTI	FICATE OF ANALYSIS	
Work Order	EB1301642	Page	: 1 of 8
Client	ENVIRONMENTAL EARTH SCIENCES	Laboratory	: Environmental Division Brisbane
Contact	: MS CHRISTINE PITMAN	Contact	: Customer Services
Address	: PO BOX 1519	Address	: 32 Shand Street Stafford QLD Australia 4053
	BALLINA NSW, AUSTRALIA 2478		
E-mail	: cpitman@eesi.biz	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 66869744	Telephone	: +61 7 3243 7222
Facsimile	: +61 02 66869755	Facsimile	: +61 7 3243 7218
Project	: 512017	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 25-JAN-2013
Sampler	: C Pitman	Issue Date	: 04-FEB-2013
Site	: Ballina		
		No. of samples received	: 4
Quote number	: EN/010/12	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics	
Minh Wills	Organic Chemist	Brisbane Inorganics	
Minh Wills	Organic Chemist	Brisbane Organics	
Minh Wills	Organic Chemist	Brisbane Organics	
Stephen Hislop	Senior Inorganic Chemist	Brisbane Inorganics	

 Address 32 Shand Street Stafford QLD Australia 4053
 PHONE +61-7-3243 7222
 Facsimile
 +61-7-3243 7218

 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group
 An ALS Limited Company

www.alsglobal.com

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• Semivolatile TPH: Matrix Spike shows high recovery due to sample heterogeneity. Confirmed by visual inspection.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	FD1	FD2	FD3	FD4	
	Cli	ient sampli	ng date / time	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	
Compound	CAS Number	LOR	Unit	EB1301642-001	EB1301642-002	EB1301642-003	EB1301642-004	
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	28.1	5.4	20.0	25.7	
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	5	<5	6	9	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	50	7	19	30	
Copper	7440-50-8	5	mg/kg	10	16	26	41	
Lead	7439-92-1	5	mg/kg	9	30	58	167	
Nickel	7440-02-0	2	mg/kg	19	7	16	14	
Zinc	7440-66-6	5	mg/kg	50	105	100	392	
EP074A: Monocyclic Aromatic Hydro	ocarbons							
Styrene	100-42-5	0.5	mg/kg			<0.5		
Isopropylbenzene	98-82-8	0.5	mg/kg			<0.5		
n-Propylbenzene	103-65-1	0.5	mg/kg			<0.5		
1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg			<0.5		
sec-Butylbenzene	135-98-8	0.5	mg/kg			<0.5		
1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg			<0.5		
tert-Butylbenzene	98-06-6	0.5	mg/kg			<0.5		
p-lsopropyltoluene	99-87-6	0.5	mg/kg			<0.5		
n-Butylbenzene	104-51-8	0.5	mg/kg			<0.5		
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	5	mg/kg			<5		
2-Butanone (MEK)	78-93-3	5	mg/kg			<5		
4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg			<5		
2-Hexanone (MBK)	591-78-6	5	mg/kg			<5		
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	0.5	mg/kg			<0.5		
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	0.5	mg/kg			<0.5		
1.2-Dichloropropane	78-87-5	0.5	mg/kg			<0.5		
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg			<0.5		
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg			<0.5		
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg			<0.5		

Page: 4 of 8Work Order: EB1301642Client: ENVIRONMENTAL EARTH SCIENCESProject: 512017

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	FD1	FD2	FD3	FD4	
	Cli	ent samplii	ng date / time	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	
Compound	CAS Number	LOR	Unit	EB1301642-001	EB1301642-002	EB1301642-003	EB1301642-004	
EP074E: Halogenated Aliphatic Comp	oounds - Continued							
Dichlorodifluoromethane	75-71-8	5	mg/kg			<5		
Chloromethane	74-87-3	5	mg/kg			<5		
Vinyl chloride	75-01-4	5	mg/kg			<5		
Bromomethane	74-83-9	5	mg/kg			<5		
Chloroethane	75-00-3	5	mg/kg			<5		
Trichlorofluoromethane	75-69-4	5	mg/kg			<5		
1.1-Dichloroethene	75-35-4	0.5	mg/kg			<0.5		
lodomethane	74-88-4	0.5	mg/kg			<0.5		
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg			<0.5		
1.1-Dichloroethane	75-34-3	0.5	mg/kg			<0.5		
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg			<0.5		
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg			<0.5		
1.1-Dichloropropylene	563-58-6	0.5	mg/kg			<0.5		
Carbon Tetrachloride	56-23-5	0.5	mg/kg			<0.5		
1.2-Dichloroethane	107-06-2	0.5	mg/kg			<0.5		
Trichloroethene	79-01-6	0.5	mg/kg			<0.5		
Dibromomethane	74-95-3	0.5	mg/kg			<0.5		
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg			<0.5		
1.3-Dichloropropane	142-28-9	0.5	mg/kg			<0.5		
Tetrachloroethene	127-18-4	0.5	mg/kg			<0.5		
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg			<0.5		
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg			<0.5		
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg			<0.5		
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg			<0.5		
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg			<0.5		
Pentachloroethane	76-01-7	0.5	mg/kg			<0.5		
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg			<0.5		
Hexachlorobutadiene	87-68-3	0.5	mg/kg			<0.5		
EP074F: Halogenated Aromatic Comp	pounds							
Chlorobenzene	108-90-7	0.5	mg/kg			<0.5		
Bromobenzene	108-86-1	0.5	mg/kg			<0.5		
2-Chlorotoluene	95-49-8	0.5	mg/kg			<0.5		
4-Chlorotoluene	106-43-4	0.5	mg/kg			<0.5		
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg			<0.5		

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	FD1	FD2	FD3	FD4	
	Cli	ient samplii	ng date / time	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	
Compound	CAS Number	LOR	Unit	EB1301642-001	EB1301642-002	EB1301642-003	EB1301642-004	
EP074F: Halogenated Aromatic Compou	Inds - Continued							
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg			<0.5		
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg			<0.5		
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg			<0.5		
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg			<0.5		
EP074G: Trihalomethanes								
Chloroform	67-66-3	0.5	mg/kg			<0.5		
Bromodichloromethane	75-27-4	0.5	mg/kg			<0.5		
Dibromochloromethane	124-48-1	0.5	mg/kg			<0.5		
Bromoform	75-25-2	0.5	mg/kg			<0.5		
EP075(SIM)B: Polynuclear Aromatic Hyd	Irocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5		<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg		<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg		<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg		<0.5		<0.5	
Anthracene	120-12-7	0.5	mg/kg		<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg		<0.5		<0.5	
Pyrene	129-00-0	0.5	mg/kg		<0.5		<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5		<0.5	
Chrysene	218-01-9	0.5	mg/kg		<0.5		<0.5	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg		<0.5		<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5		<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5		<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5		<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5		<0.5	
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene TEQ (WHO)		0.5	mg/kg		<0.5		<0.5	
EP080/071: Total Petroleum Hydrocarbo	ns							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	90	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	1530	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	1180	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	FD1	FD2	FD3	FD4	
	Cl	ient sampli	ng date / time	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	
Compound	CAS Number	LOR	Unit	EB1301642-001	EB1301642-002	EB1301642-003	EB1301642-004	
EP080/071: Total Petroleum Hydroca	rbons - Continued							
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	2800	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	0 Draft						
C6 - C10 Fraction		10	mg/kg	<10	<10	<10	<10	
[^] C6 - C10 Fraction minus BTEX (F1)		10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	200	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	2290	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	900	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	3390	
EP080: BTEX								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
EP080: BTEXN								
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
[^] Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%			104		
Toluene-D8	2037-26-5	0.1	%			114		
4-Bromofluorobenzene	460-00-4	0.1	%			125		
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.1	%		117		92.1	
2-Chlorophenol-D4	93951-73-6	0.1	%		110		99.0	
2.4.6-Tribromophenol	118-79-6	0.1	%		80.2		109	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%		105		82.6	
Anthracene-d10	1719-06-8	0.1	%		108		92.1	
4-Terphenyl-d14	1718-51-0	0.1	%		111		103	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	89.7	96.8	97.3	94.5	
Toluene-D8	2037-26-5	0.1	%	81.8	101	96.8	97.1	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	FD1	FD2	FD3	FD4			
	Cl	ient sampli	ng date / time	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00	24-JAN-2013 12:00			
Compound	CAS Number	LOR	Unit	EB1301642-001	EB1301642-002	EB1301642-003	EB1301642-004			
EP080S: TPH(V)/BTEX Surrogates - Co	EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.1	%	109	106	110	99.0			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7
Toluene-D8	2037-26-5	60.3	131.1
4-Bromofluorobenzene	460-00-4	59.2	126.6
EP075(SIM)S: Phenolic Compound Surro	ogates		
Phenol-d6	13127-88-3	34.8	154.5
2-Chlorophenol-D4	93951-73-6	41.9	152.8
2.4.6-Tribromophenol	118-79-6	26.0	156.8
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	33.8	156.5
Anthracene-d10	1719-06-8	36.9	153.1
4-Terphenyl-d14	1718-51-0	41.8	172.2
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7
Toluene-D8	2037-26-5	60.3	131.1
4-Bromofluorobenzene	460-00-4	59.2	126.6

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EB1301642	Page	: 1 of 7
Client	: ENVIRONMENTAL EARTH SCIENCES	Laboratory	: Environmental Division Brisbane
Contact	: MS CHRISTINE PITMAN	Contact	: Customer Services
Address	: PO BOX 1519	Address	: 32 Shand Street Stafford QLD Australia 4053
	BALLINA NSW, AUSTRALIA 2478		
E-mail	: cpitman@eesi.biz	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 66869744	Telephone	: +61 7 3243 7222
Facsimile	: +61 02 66869755	Facsimile	: +61 7 3243 7218
Project	: 512017	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: Ballina		
C-O-C number	:	Date Samples Received	: 25-JAN-2013
Sampler	: C Pitman	Issue Date	: 04-FEB-2013
Order number	:		
		No. of samples received	: 4
Quote number	: EN/010/12	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil miscellaneous glass jar (EA055-103)								
FD1,	FD2,	24-JAN-2013				29-JAN-2013	07-FEB-2013	✓
FD3,	FD4							
EG005T: Total Metals by ICP-AES								
Soil miscellaneous glass jar (EG005T)								
FD1,	FD2,	24-JAN-2013	30-JAN-2013	23-JUL-2013	1	30-JAN-2013	23-JUL-2013	 ✓
FD3,	FD4							
EP080/071: Total Petroleum Hydrocarbons	;							
Soil miscellaneous glass jar (EP071)								
FD1,	FD2,	24-JAN-2013	31-JAN-2013	07-FEB-2013	1	01-FEB-2013	12-MAR-2013	 ✓
FD3,	FD4							
EP074D: Fumigants								
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	-	31-JAN-2013	07-FEB-2013	✓
EP074E: Halogenated Aliphatic Compound	ds							
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	-	31-JAN-2013	07-FEB-2013	 ✓
EP074F: Halogenated Aromatic Compound	ds							
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	✓	31-JAN-2013	07-FEB-2013	✓
EP074A: Monocyclic Aromatic Hydrocarbo	ons							
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	-	31-JAN-2013	07-FEB-2013	✓
EP074B: Oxygenated Compounds								
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	-	31-JAN-2013	07-FEB-2013	✓
EP074C: Sulfonated Compounds								
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	-	31-JAN-2013	07-FEB-2013	✓

Matrix: SOIL					Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074G: Trihalomethanes								
Soil miscellaneous glass jar (EP074)								
FD3		24-JAN-2013	29-JAN-2013	07-FEB-2013	1	31-JAN-2013	07-FEB-2013	✓
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons							
Soil miscellaneous glass jar (EP075(SIM								
FD2,	FD4	24-JAN-2013	31-JAN-2013	07-FEB-2013	✓	01-FEB-2013	12-MAR-2013	 ✓
EP080: BTEX								
Soil miscellaneous glass jar (EP080)								
FD1,	FD2,	24-JAN-2013	29-JAN-2013	07-FEB-2013	1	31-JAN-2013	07-FEB-2013	✓
FD3,	FD4							
EP080: BTEXN								
Soil miscellaneous glass jar (EP080)								
FD1,	FD2,	24-JAN-2013	29-JAN-2013	07-FEB-2013	1	31-JAN-2013	07-FEB-2013	✓
FD3,	FD4							
EP080/071: Total Recoverable Hydroca	rbons - NEPM 2010 Draft							
Soil miscellaneous glass jar (EP080)								
FD1,	FD2,	24-JAN-2013	29-JAN-2013	07-FEB-2013	1	31-JAN-2013	07-FEB-2013	✓
FD3,	FD4							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	16	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.1	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	13	7.7	5.0	✓	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)
Volatile Organic Compounds	EP074	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
aboratory Control Spike (LCS) Recoveries							
EP074E: Halogenated Aliphatic Compounds	3207911-025		Dichlorodifluoromethan	75-71-8	68.4 %	84-127%	Recovery less than lower control limit
			e				
EP074E: Halogenated Aliphatic Compounds	3207911-025		Chloromethane	74-87-3	134 %	67-128%	Recovery greater than upper control
							limit
EP074E: Halogenated Aliphatic Compounds	3207911-025		lodomethane	74-88-4	111 %	56-111%	Recovery greater than upper control
							limit
Atrix Spike (MS) Recoveries							
EG005T: Total Metals by ICP-AES	EB1301587-001	Anonymous	Chromium	7440-47-3	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005T: Total Metals by ICP-AES	EB1301587-001	Anonymous	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	EB1301587-002	Anonymous	Pyrene	129-00-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	EB1301587-002	Anonymous	C15 - C28 Fraction		312 %	70-130%	Recovery greater than upper data
							quality objective
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	2 EB1301587-002	Anonymous	>C16 - C34 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

• For all matrices, no Method Blank value outliers occur.

• For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB1301642	Page	: 1 of 11
Client	: ENVIRONMENTAL EARTH SCIENCES	Laboratory	: Environmental Division Brisbane
Contact	: MS CHRISTINE PITMAN	Contact	: Customer Services
Address	: PO BOX 1519	Address	: 32 Shand Street Stafford QLD Australia 4053
	BALLINA NSW, AUSTRALIA 2478		
E-mail	: cpitman@eesi.biz	E-mail	: Brisbane.Enviro.Services@alsglobal.com
Telephone	: +61 66869744	Telephone	: +61 7 3243 7222
Facsimile	: +61 02 66869755	Facsimile	: +61 7 3243 7218
Project	: 512017	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: Ballina		
C-O-C number	:	Date Samples Received	: 25-JAN-2013
Sampler	: C Pitman	Issue Date	: 04-FEB-2013
Order number	:		
		No. of samples received	: 4
Quote number	: EN/010/12	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Accredited for compliance with ISO/IEC 17025.

NATA Accredited Laboratory 825

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics
Minh Wills	Organic Chemist	Brisbane Inorganics
Minh Wills	Organic Chemist	Brisbane Organics
Minh Wills	Organic Chemist	Brisbane Organics
Stephen Hislop	Senior Inorganic Chemist	Brisbane Inorganics

Address 32 Shand Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%		
A055: Moisture Co	ntent (QC Lot: 2704047	7)									
EB1301572-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	22.5	23.3	3.2	0% - 20%		
B1301587-004	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	36.4	36.3	0.4	0% - 20%		
G005T: Total Metal	s by ICP-AES (QC Lot:	2704026)									
EB1301473-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	2	4	33.9	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	849	904	6.2	0% - 20%		
		EG005T: Nickel	7440-02-0	2	mg/kg	9	20	74.6	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	104	116	10.8	0% - 20%		
		EG005T: Lead	7439-92-1	5	mg/kg	43	68	45.8	0% - 50%		
		EG005T: Zinc	7440-66-6	5	mg/kg	771	845	9.2	0% - 20%		
B1301642-002	FD2	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	7	12	56.7	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	7	9	27.6	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	16	20	20.4	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	30	29	0.0	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	105	101	3.6	0% - 20%		
P074A: Monocyclic	Aromatic Hydrocarbo	ns (QC Lot: 2703997)									
EB1301642-003	FD3	EP074: Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: p-lsopropyltoluene	99-87-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
P074B: Oxygenate	d Compounds (QC Lot								1		
B1301642-003	FD3	EP074: Vinyl Acetate	108-05-4	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: 2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: 2-Hexanone (MBK)	591-78-6	5	mg/kg	<5	<5	0.0	No Limit		
P074C: Sulfonated	Compounds (QC Lot:			-	33	-	-				
B1301642-003	FD3	EP074: Carbon disulfide	75-15-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
P074D: Fumigants	-		10-10-0	0.0	mg/kg	-0.0	-0.0	0.0			

Page	: 4 of 11
Work Order	: EB1301642
Client	: ENVIRONMENTAL EARTH SCIENCES
Project	512017

Sub-Matrix: SOIL			[Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP074D: Fumigants	(QC Lot: 2703997) - co	ontinued									
EB1301642-003	FD3	EP074: 2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
EP074E: Halogenate	d Aliphatic Compounds	s (QC Lot: 2703997)									
EB1301642-003	FD3	EP074: 1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: lodomethane	74-88-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Trichloroethene	79-01-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Dibromomethane	74-95-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	0.7	38.6	No Limit		
		EP074: 1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: Chloromethane	74-87-3	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: Vinyl chloride	75-01-4	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: Bromomethane	74-83-9	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: Chloroethane	75-00-3	5	mg/kg	<5	<5	0.0	No Limit		
		EP074: Trichlorofluoromethane	75-69-4	5	mg/kg	<5	<5	0.0	No Limit		
EP074F: Halogenate	d Aromatic Compound	s (QC Lot: 2703997)									
EB1301642-003	FD3	EP074: Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: Bromobenzene	108-86-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP074: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		

Page	: 5 of 11
Work Order	: EB1301642
Client	: ENVIRONMENTAL EARTH SCIENCES
Project	: 512017

Sub-Matrix: SOIL			Γ			Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP074F: Halogenate	ed Aromatic Compour	nds (QC Lot: 2703997) - continued							
EB1301642-003	FD3	EP074: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP074G: Trihalomet	thanes (QC Lot: 2703	3997)							
EB1301642-003	FD3	EP074: Chloroform	67-66-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074: Bromoform	75-25-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hyd	rocarbons (QC Lot: 2704023)							
EB1301587-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	5	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (WHO)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 2703996)							
EB1301587-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EB1301642-003	FD3	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/07 <u>1: Total Pe</u>	troleum Hydrocarbor	ns (QC Lot: 2704022)							
EB1301587-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	-	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EB1301601-004	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: To <u>tal Re</u>	coverable Hydrocarb	oons - NEPM 2010 Draft (QC Lot: 2703996)							
EB1301587-001	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
	,								

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 2703996) - continue	d						
EB1301642-003	FD3	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 2704022)							
EB1301587-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	EP071: >C34 - C40 Fraction			100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EB1301601-004	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 2703996)								
EB1301587-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EB1301642-003	FD3	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G005T: Total Metals by ICP-AES (QCLot: 27040	26)							
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	110	77	127
G005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	102	76	122
G005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	112	73	127
G005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	112	80	122
G005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	110	77	121
G005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	111	80	126
G005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	110	77	127
P074A: Monocyclic Aromatic Hydrocarbons (Q0	CLot: 2703997)							
P074: Styrene	100-42-5	0.5	mg/kg	<0.5	1 mg/kg	82.8	62	108
P074: Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5	1 mg/kg	86.1	66	111
P074: n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5	1 mg/kg	83.3	62	108
P074: 1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5	1 mg/kg	83.7	68	107
P074: sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5	1 mg/kg	83.6	67	110
P074: 1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5	1 mg/kg	84.7	68	110
P074: tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5	1 mg/kg	85.4	66	110
P074: p-Isopropyltoluene	99-87-6	0.5	mg/kg	<0.5	1 mg/kg	84.3	66	112
P074: n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5	1 mg/kg	83.2	66	110
P074B: Oxygenated Compounds (QCLot: 27039	97)							
P074: Vinyl Acetate	108-05-4	5	mg/kg	<5	10 mg/kg	72.9	64	113
P074: 2-Butanone (MEK)	78-93-3	5	mg/kg	<5	10 mg/kg	90.5	60	130
P074: 4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5	10 mg/kg	82.4	56	107
P074: 2-Hexanone (MBK)	591-78-6	5	mg/kg	<5	10 mg/kg	81.6	57	113
P074C: Sulfonated Compounds (QCLot: 270399	7)							
P074: Carbon disulfide	75-15-0	0.5	mg/kg	<0.5	1 mg/kg	93.1	62	111
P074D: Fumigants (QCLot: 2703997)								1
P074: 2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	1 mg/kg	82.2	51	130
P074: 1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	1 mg/kg	83.4	60	112
P074: cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	2 mg/kg	82.3	58	114
P074: trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	2 mg/kg	78.5	55	117
P074: 1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	1 mg/kg	84.8	63	113
P074E: Halogenated Aliphatic Compounds (QC	Lot: 2703997)							
P074: Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	10 mg/kg	# 68.4	84	127
P074: Chloromethane	74-87-3	5	mg/kg	<5	10 mg/kg	# 134	67	128
P074: Vinyl chloride	75-01-4	5	mg/kg	<5	10 mg/kg	124	66	132

Page : 8 of 11 Work Order : EB1301642 Client : ENVIRONMENTAL EARTH SCIENCES Project : 512017

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS			
				Report	Spike	Spike Recovery (%)		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP074E: Halogenated Aliphatic Compounds (QCLo	,								
EP074: Bromomethane	74-83-9	5	mg/kg	<5	10 mg/kg	115	56	121	
EP074: Chloroethane	75-00-3	5	mg/kg	<5	10 mg/kg	101	72	120	
EP074: Trichlorofluoromethane	75-69-4	5	mg/kg	<5	10 mg/kg	97.7	62	123	
EP074: 1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	1 mg/kg	80.0	67	114	
EP074: lodomethane	74-88-4	0.5	mg/kg	<0.5	1 mg/kg	# 111	56	111	
EP074: trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	1 mg/kg	85.9	59	109	
EP074: 1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	1 mg/kg	86.3	54	125	
EP074: cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	1 mg/kg	85.9	64	108	
EP074: 1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	1 mg/kg	83.9	64	112	
EP074: 1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	1 mg/kg	81.6	64	112	
EP074: Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	1 mg/kg	84.2	60	115	
EP074: 1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	1 mg/kg	84.5	65	109	
P074: Trichloroethene	79-01-6	0.5	mg/kg	<0.5	1 mg/kg	84.0	66	112	
P074: Dibromomethane	74-95-3	0.5	mg/kg	<0.5	1 mg/kg	82.7	64	114	
EP074: 1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	1 mg/kg	85.1	63	116	
P074: 1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	1 mg/kg	82.4	68	114	
P074: Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	1 mg/kg	96.8	74	126	
P074: 1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	1 mg/kg	82.6	65	110	
P074: trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	1 mg/kg	70.1	48	130	
P074: cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	1 mg/kg	91.6	49	130	
P074: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	1 mg/kg	80.5	68	108	
P074: 1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	1 mg/kg	79.0	61	121	
P074: Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	1 mg/kg	64.9	42	115	
P074: 1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	1 mg/kg	77.7	54	131	
P074: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	1 mg/kg	81.4	53	117	
P074F: Halogenated Aromatic Compounds (QCLo	t [.] 2703997)								
P074: Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	1 mg/kg	86.6	68	112	
P074: Bromobenzene	108-86-1	0.5	mg/kg	<0.5	1 mg/kg	85.4	68	109	
P074: 2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	1 mg/kg	85.8	66	106	
EP074: 4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	1 mg/kg	84.4	66	106	
P074: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	1 mg/kg	84.3	68	108	
P074: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	1 mg/kg	84.5	68	106	
P074: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	1 mg/kg	81.7	68	108	
P074: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	1 mg/kg	79.4	60	113	
P074: 1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	1 mg/kg	79.6	63	113	
P074G: Trihalomethanes (QCLot: 2703997)									
P074: Chloroform	67-66-3	0.5	mg/kg	<0.5	1 mg/kg	85.8	66	112	
P074: Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	1 mg/kg	82.3	56	116	
EP074: Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	1 mg/kg	83.3	62	114	

Page : 9 of 11 Work Order : EB1301642 Client : ENVIRONMENTAL EARTH SCIENCES Project : 512017

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP074G: Trihalomethanes (QCLot: 2703997) - co	ntinued								
EP074: Bromoform	75-25-2	0.5	mg/kg	<0.5	1 mg/kg	86.2	53	122	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 2704023)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	5.0 mg/kg	94.7	66	119	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	5.0 mg/kg	106	62	118	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	5.0 mg/kg	91.6	80	121	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	5.0 mg/kg	96.6	71	116	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	5.0 mg/kg	98.1	67	117	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	5.0 mg/kg	101	65	115	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	5.0 mg/kg	109	64	116	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	5.0 mg/kg	108	64	136	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	5.0 mg/kg	111	56	120	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	5.0 mg/kg	115	57	119	
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	5.0 mg/kg	110	44	129	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	5.0 mg/kg	102	59	129	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	5.0 mg/kg	104	60	121	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	5.0 mg/kg	86.5	51	135	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	5.0 mg/kg	105	45	134	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	5.0 mg/kg	99.6	53	133	
EP075(SIM): Benzo(a)pyrene TEQ (WHO)		0.5	mg/kg	<0.5					
EP080/071: Total Petroleum Hydrocarbons(QCLo	t: 2703996)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	16 mg/kg	99.1	66	129	
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 2704022)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	312 mg/kg	91.4	84	117	
EP071: C15 - C28 Fraction		100	mg/kg	<100	500 mg/kg	93.8	80	118	
P071: C29 - C36 Fraction		100	mg/kg	<100					
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft (QCI of: 27	03996)							
EP080: C6 - C10 Fraction		10	mg/kg	<10	18.5 mg/kg	99.5	66	131	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft (OCI of: 27	04022)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	413 mg/kg	97.8	86	117	
EP071: >C10 - C10 Fraction		100	mg/kg	<100	360 mg/kg	88.3	69	113	
EP071: >C34 - C40 Fraction		100	mg/kg	<100					
					I			I	
EP080: BTEXN (QCLot: 2703996)	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	102	73	108	
EP080: Benzene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	102	73	108	
	100-08-3	0.5	mg/kg	<0.5	1 mg/kg	103	67	110	
EP080: Ethylbenzene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	100	66	110	
EP080: meta- & para-Xylene	108-38-3	0.0	iiig/ikg	-0.0	2 mg/ng	100	00	112	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	103	68	110	

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%) Recovery Limit		Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 2703996) - continued									
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	103	72	115	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Me	als by ICP-AES (QCLot: 2704026)						
EB1301587-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	70.4	70	130
		EG005T: Cadmium	7440-43-9	25 mg/kg	104	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	# Not Determined	70	130
		EG005T: Copper	7440-50-8	50 mg/kg	108	70	130
		EG005T: Lead	7439-92-1	50 mg/kg	74.2	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	103	70	130
		EG005T: Zinc	7440-66-6	50 mg/kg	# Not Determined	70	130
EP075(SIM)B: Pol	vnuclear Aromatic Hydrocarbons (QCLo	t: 2704023)					
EB1301587-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	2.5 mg/kg	89.2	70	130
		EP075(SIM): Pyrene	129-00-0	2.5 mg/kg	# Not Determined	70	130
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 270399)6)					
EB1301587-002	Anonymous	EP080: C6 - C9 Fraction		8 mg/kg	73.4	70	130
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 270402	22)					
EB1301587-002	Anonymous	EP071: C10 - C14 Fraction		312 mg/kg	94.6	70	130
		EP071: C15 - C28 Fraction		500 mg/kg	# 312	70	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2010	Draft (QCLot: 2703996)					
EB1301587-002	Anonymous	EP080: C6 - C10 Fraction		8 mg/kg	79.4	70	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2010	Draft (QCLot: 2704022)					
EB1301587-002	Anonymous	EP071: >C10 - C16 Fraction		413 mg/kg	108	70	130
		EP071: >C16 - C34 Fraction		360 mg/kg	# Not Determined	70	130
EP080: BTEXN (C	CLot: 2703996)						
EB1301587-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	97.5	70	130
		EP080: Toluene	108-88-3	2 mg/kg	97.8	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (M	IS) and Matrix S	pike Duplicate	e (MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total F	Petroleum Hydrocarbons (C	QCLot: 2703996)								
EB1301587-002	Anonymous	EP080: C6 - C9 Fraction		8 mg/kg	73.4		70	130		
EP080/071: Total F	Recoverable Hydrocarbons	- NEPM 2010 Draft (QCLot: 2703996)								
EB1301587-002	Anonymous	EP080: C6 - C10 Fraction		8 mg/kg	79.4		70	130		
EP080: BTEXN (Q	CLot: 2703996)									
EB1301587-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	97.5		70	130		
		EP080: Toluene	108-88-3	2 mg/kg	97.8		70	130		
EP080/071: Total F	Petroleum Hydrocarbons (C	QCLot: 2704022)								
EB1301587-002	Anonymous	EP071: C10 - C14 Fraction		312 mg/kg	94.6		70	130		
		EP071: C15 - C28 Fraction		500 mg/kg	# 312		70	130		
EP080/071: Total F	Recoverable Hydrocarbons	- NEPM 2010 Draft (QCLot: 2704022)								
EB1301587-002	Anonymous	EP071: >C10 - C16 Fraction		413 mg/kg	108		70	130		
		EP071: >C16 - C34 Fraction		360 mg/kg	# Not		70	130		
					Determined					
EP075(SIM)B: Poly	nuclear Aromatic Hydroca	rbons (QCLot: 2704023)								
EB1301587-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	2.5 mg/kg	89.2		70	130		
		EP075(SIM): Pyrene	129-00-0	2.5 mg/kg	# Not		70	130		
					Determined					
EG005T: Total Met	als by ICP-AES (QCLot: 27	704026)								
EB1301587-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	70.4		70	130		
		EG005T: Cadmium	7440-43-9	25 mg/kg	104		70	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	# Not		70	130		
					Determined					
		EG005T: Copper	7440-50-8	50 mg/kg	108		70	130		
		EG005T: Lead	7439-92-1	50 mg/kg	74.2		70	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	103		70	130		
		EG005T: Zinc	7440-66-6	50 mg/kg	# Not		70	130		
					Determined					

roje	ect Manager: Christine	Pitman		-	Samp	ler: <u>C</u> I	Pitman				Site L	ocatior	n:	3alli	مع		ALC	BQ	-	
	Sample ID/ Depth	Anticipated Result (PID)/EC reading	Date sampled	Time sampled		Watter Water Sediment	S01 201	Los - S74	405-204	605 5-5-57V	An	alysis Re	quired			-	Sample-specific instructions/ notes	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
_	FD1 FD2								\checkmark				•						nmental Divisi	
-	FD3	`								/								- ML	Brisbane	211
	FD4							~										_ EE	Brisbane Work Order	2
ļ																		 		
					<u> </u>															
				-														Telepho	ne:+61-7-3243 7	11 222
																	• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	1
	· · · · · · · · · · · · · · · · · · ·															-				- -
																				-
																		· · · ·		
	- • • • • • • • • • • • • • • • • • • •																· · · · · · · · · · · · · · · · · · ·			-
İ													1.							
													-			-				
ĺ	TOTAL						4	2	1	I									· dra. Anstron	
	Around (circle):	NORMA	A I 3 DAY	S / 48 HF	RS / 24 H	RS (co	onfirm v	with lab	in ac	lvance	if quic	k turn-a	around i	s requir	əd)		Quotation No. (if applicable):	A-1849-1	· · · · · · · · · · · · · · · · · · ·	<u></u>
n	nents/ Instructions:																nd report to (<i>email address</i>) : Cc: report to (<i>email address</i>) :			_
											<u></u>	÷								
		Name	DITA	1.24		Sign		2			Da		110		Time	, ,	Phone: (02) 6686 9744			******
	off Site/Office by: ving Lab:	$\frac{C}{P}$	PITN B	IN		l	NA A I	-			Z	$\frac{y}{1}$	13	-	1200 12:0	50	Phone: (02) 6686 9744 Fax: (02) 6686 9744 PO Box 1519 Ballina NSW 2478	ENVIRONN EARTH SCI		

MF 34 Chain of Custody 5 October 2011 Version 8

Office: PO BOX 48 ERMINGTON NSW 2115

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8903 Fax: (02) 9838 8919 A.C.N. 003 614 695 A.B.N. 81 829 182 852 NATA No: 1884

ANALYTICAL REPORT for:

ENVIRONMENTAL & EARTH SCIENCES

PO BOX 380 NORTH SYDNEY 2059

ATTN: C.PITMAN

- JOB NO: SAL24504
- CLIENT ORDER: 512017
- DATE RECEIVED: 25/01/13
- DATE COMPLETED: 07/02/13
- TYPE OF SAMPLES: SOILS
- NO OF SAMPLES: 35

. . . . Issued on 11/02/13 Lance Smith

(Chief Chemist)

ANALYTICAL REPORT

JOB NO: SAL24504 CLIENT ORDER: 512017

	SAMPLES	Cu mg/kg	Pb mg/kg	Zn mg/kg	Cd mg/kg	Cr mg/kg
1	TP1/0.5-0.6	12	80	47	<0.5	8.0
2	TP3/0.1-0.3	20	19	60	<0.5	3.5
3	TP4/0.4-0.5	1.5	3.0	4.5	<0.5	2.0
4	TP6/0.4-0.5	7.0	18	48	<0.5	18
5	TP7/0.5-0.7	4.5	9.0	27	<0.5	17
6	TP8/0.2-0.3	15	24	37	<0.5	4.0
7	TP9/0.1-0.2	13	28	84	<0.5	5.0
8	TP10/0.4-0.5	23	24	68	<0.5	4.5
9	TP11/0.7-0.8	19	15	56	<0.5	3.0
10	TP12/1.1-1.2	4.0	7.0	47	<0.5	12
11	TP13/0.5-0.6	22	92	280	<0.5	15
12	TP14/0.5-0.6	9.0	12	35	<0.5	8.5
13	TP15/0.2-0.3	34	47	57	<0.5	11
14	TP22/0.4-0.5	4.0	12	19	<0.5	10
15	TP32/0.6-0.7	2.0	6.0	16	<0.5	5.5
16	TP31/0.4-0.5	2.5	11	23	<0.5	7.0
17	FD1	5.0	10	26	<0.5	17
18	FD2	12	27	86	<0.5	6.0
19	FD3	7.5	36	38	<0.5	9.5
20	TP17/0.3-0.4	21	47	240	<0.5	14
21	TP19/0.2-0.3	10	24	92	<0.5	17
22	TP19/0.6-0.7	19	90	190	<0.5	14
23	TP19/2.0-2.1	7.0	35	34	<0.5	10
24	TP21/0.5-0.6	68	260	620	1.5	18
25	TP26/1.1-1.2	80	350	910	2.5	13
26	TP27/1.5-1.6	60	220	1760	2.5	17
27	TP28/0.9-1.0	4.0	14	28	<0.5	10
28	TP28/1.1-1.2	1.0	1.5	3.0	<0.5	1.0
29	TP29/2.0-2.1	90	460	880	3.5	28
30	TP30/0.4-0.5	12	52	92	0.5	7.0
31	SS2/0.0-0.1	32	17	110	<0.5	6.5
32	SS4/0.0-0.1	30	30	390	0.5	12
33	SS5/0.0-0.1	23	100	250	0.5	13
34	SS6/0.0-0.1	100	270	1960	2.5	26
35	FD4	25	105	260	0.5	15
זמזזמ	BLANK JICATES:	<0.5	<0.5	<0.5	<0.5	<0.5
20	TP17/0.3-0.4	0.0		000	0 5	
20	AGAL-10	23	44	230	<0.5	14
	AGAL-10	22	40	60	10	77
MDL		0.5	0.5	0.5	0.5	0.5
	od Code	Ml	Ml	Ml	Ml	Ml
Prepa	ration	P3	P3	P3	P3	Р3

Page 2 of 6

Page 3 of 6

SYDNEY ANALYTICAL LABORATORIES

ANALYTICAL REPORT

JOB NO: SAL24504 CLIENT ORDER: 512017

SAMPLES	Ni	As	Hg
	mg/kg	mg/kg	mg/kg
1 TP1/0.5-0.6 2 TP3/0.1-0.3 3 TP4/0.4-0.5 4 TP6/0.4-0.5 5 TP7/0.5-0.7 6 TP8/0.2-0.3 7 TP9/0.1-0.2 8 TP10/0.4-0.5 9 TP11/0.7-0.8 10 TP12/1.1-1.2 11 TP13/0.5-0.6 12 TP14/0.5-0.6 13 TP15/0.2-0.3 14 TP22/0.4-0.5 15 TP32/0.6-0.7 16 TP31/0.4-0.5 17 FD1 18 FD2 19 FD3 20 TP17/0.3-0.4 21 TP19/0.2-0.3 22 TP19/0.6-0.7 23 TP19/2.0-2.1 24 TP21/0.5-0.6 25 TP26/1.1-1.2 26 TP27/1.5-1.6 27 TP28/0.9-1.0 28 TP28/1.1-1.2 29 TP29/2.0-2.1 30 TP30/0.4-0.5 31 SS2/0.0-0.1 32 SS4/0.0-0.1 33 SS5/0.0-0.1 34 SS6/0.0-0.1 35 FD4 BLANK DUPLICATES: 20 TP17/0.3-0.4	$\begin{array}{c} 4.5\\ 8.0\\ 1.0\\ 15\\ 8.0\\ 4.5\\ 10\\ 12\\ 9.5\\ 6.0\\ 13\\ 10\\ 8.5\\ 7.0\\ 4.5\\ 6.5\\ 8.5\\ 10\\ 7.0\\ 4.5\\ 6.5\\ 8.5\\ 10\\ 7.0\\ 4.5\\ 6.5\\ 8.5\\ 10\\ 7.0\\ 15\\ 14\\ 14\\ 6.5\\ 20\\ 14\\ 23\\ 7.5\\ 2.0\\ 30\\ 7.5\\ 5.5\\ 11\\ 11\\ 17\\ 11\\ <0.5\\ 16\end{array}$	$\begin{array}{c} 3.5\\ 4.5\\ 1.5\\ 3.5\\ 3.0\\ 3.0\\ 4.0\\ 4.5\\ 4.0\\ 3.0\\ 5.0\\ 3.0\\ 5.0\\ 3.0\\ 5.5\\ 4.0\\ 3.5\\ 5.5\\ 4.5\\ 5.5\\ 4.5\\ 5.0\\ 4.0\\ 5.5\\ 5.0\\ 4.0\\ 5.5\\ 5.0\\ 4.0\\ 5.5\\ 5.0\\ 4.0\\ 5.5\\ 5.0\\ 4.0\\ 5.5\\ 5.0\\ 5.0\\ 5.0\\ 5.0\end{array}$	0.080 0.045 0.005 0.050 0.035 0.045 0.035 0.045 0.035 0.055 0.080 0.040 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.030 0.030 0.035 0.030 0.035 0.030 0.035 0.035 0.035 0.030 0.12 0.022 0.035 0.055 0.030 0.12 0.050 0.045 0.045 0.045 0.050 0.045 0.030 0.045 0.030 0.045 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.045 0.030 0.040 0.030 0.035 0.035 0.035 0.035 0.030 0.040 0.040 0.040 0.030 0.030 0.030 0.040 0.040 0.040 0.030 0.030 0.030 0.040 0.040 0.030 0.030 0.030 0.040 0.040 0.030 0.030 0.030 0.040 0.040 0.030 0.030 0.040 0.030 0.040 0.040 0.030 0.040 0.030 0.040 0.040 0.040 0.030 0.040 0.030 0.040 0.030 0.040 0.030 0.040 0.040 0.040 0.030 0.040 0.030 0.040 0.040 0.040 0.040 0.040 0.030 0.040 0.040 0.030 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.045 0.040 0.045 0.040
AGAL-10	19	20	10.2
MDL	0.5	0.5	0.005
Method Code	M1	M7	M3
Preparation	P3	P3	P1

RESULTS ON DRY BASIS

LABORATORY DUPLICATE REPORT

JOB NO: SAL24504 CLIENT ORDER: 512017

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4 TP17/0.3-0.4	Copper Lead Zinc Cadmium Chromium Nickel Arsenic Mercury	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.005	21 47 240 <0.5 14 15 5.5 0.085	23 44 230 <0.5 14 16 5.0 0.080	9 7 4 0 6 9 6

Acceptance criteria:

RPD <50% for low level (<20xMDL)
RPD <30% for medium level (20-100xMDL)
RPD <15% for high level (>100xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

CERTIFIED REFERENCE MATERIAL

JOB NO: SAL24504 CLIENT ORDER: 512017

CRM Number	Analyte	Units	CRM Result	Certified Value	%Recovery	Acceptance Criteria %
AGAL-10	Copper	mg/kg	22	23.2	95	85-115
AGAL-10	Lead	mg/kg	40	40.4	99	85-115
AGAL-10	Zinc	mg/kg	60	57.0	105	85-115
AGAL-10	Cadmium	mg/kg	10	9.3	108	80-120
AGAL-10	Chromium	mg/kg	77	82.0	94	80-120
AGAL-10	Nickel	mg/kg	19	17.8	107	80-125
AGAL-10	Arsenic	mg/kg	20	17.2	116	80-125
AGAL-10	Mercury	mg/kg	10.2	11.6	88	80-120

All results are within the acceptance criteria

Note: The hot acid digest does not always determine 'total' metals. Refractory elements such as Iron and Aluminium and some base metals (particularly Chromium) show lower recoveries depending on their form within the sample matrix. Silicates and oxides are normally less soluble than elements in metallic or salt forms. The acceptance criteria for this reference material is based on histories of analyte recoveries using the nitric acid based digestion procedures.

ANALYTICAL REPORT

JOB NO: SAL24504 CLIENT ORDER: 512017

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

- P3 Sample dried, jaw crushed and sieved at 1mm
- P1 Analysis performed on sample as received
- M1 Base Metal Digestion Method 3050 (HNO3/H2O2)
- Element determined by APHA 3111B (Flame AAS)
- M7 Hydride Element Digestion Method 7061 (HNO3/H2SO4)
- Element determined by APHA 3114B (Hydride Generation AAS) M3 Mercury - Digestion Method 7471 (HNO3/HCl) Determined by APHA 3112B (Cold Vapour AAS)

APPENDIX D CALIBRATION CERTIFICATES

RENTALS

Equipment Report - GEOTECHNICAL INSTRUMENTS GEM2000

This Gas Meter has been performance checked / calibrated* as follows:

Calibration	Cal Value	Reading	Cal Value	Reading	Pass?
CH4	60% vol	60.4 %	0.00% vol	0.0 %	Ø
· CH4 -check only	2.5%CH4	2,6%			
H2s	25ppm	Z8 ppm	0 ppm	O ppm	
02	20.9% vol	20,8%	0.00% vol	0,0 %	
СО	100ppm	/0/ ppm	0 ppm	O ppm	
CO2	40% vol	39.8%			
Operations Check	I				, <u></u>
Electrical Safety Tag attac	hed (AS/NZS 3760)) Tag No:		Valid to:	
Cleaned/checked		Filter Check	Battery	Status @ <u>/0⁄0</u> %)
* Calibration gas traceability info	rmation is available	upon request.			

18/01/2013 Checked by: MILENKO Date: Signed: _

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
R		Sampling Probe with In-Line Filter
		1m of Sampling Tube
₫.		Carry Strap
- D	_ []	Battery Charger and AC/DC Power Supply
		Operating Quick Guide behind foam on lid of case
E		Manual behind foam on lid of case
Ē	\sim \Box	Spare Inline Filters Qty (/)
		Carry case
		Data Cable and Software CD or Diskette
		Instrument Battery Status @%
		Check to confirm electrical safety (tag must be valid)
	Π	
		- Unitiala MC

Processors Signature/ Initials

12

Quote Reference	33724	Condition on return
Customer Ref		
Equipment ID	GEM 2000 +	PMC
Equipment serial no.	GM 13934	/ 11
Return Date	i i /	
Return Time		

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Ca	all) 1300 735 295	Fax: (Free Call) 1800 675 123		ail: RentalsAU@Thermofisher.com
Melbourne Branch 5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavers Road, North Ryde 2113	Adeialde Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ress St Newslead 4006	121 Berlingarra Ave Malaga WA 6090 G0541
Issue 5		Sep 11		00041

ACTIVE ENVIRONMENTAL SOLUTIONS

Calibration and Service Report - Gas Monitor

Manufacturer: **RAE** Systems MBA30025N8 Company: **Environmental Earth Sciences** Serial #: Contact: Chris Conoley Instrument: MultiRÁE Asset #: Address: 7-9 George Place Model: Pumped Part #: MBA3-A1C1R0E-020 ARTARMON, NSW 2064 Configuration: OFCH VOC Sold: 8/12/2011 Phone: 02 9922 1777 Wireless: Last Cal: 10/09/2012 02 9922 1010 Network ID: AES.020750 Fax: Job #: Cal Spec: Email: cconoley@eesi.biz Unit ID: OFCH VOC -Order #: Details: 04032 -

Item	Test	Pass/Fail	Comments	Part Code	S/W
Battery	NiCd, NiMH, Dry cell, Li Ion	1			
Charger	Charger, Power supply	1			
	Cradle	-			
Pump	Flow	x	Pump Cleaned > 400 ml/min	Section 2.	
Filter	Filter, fitting, etc	 ✓ 	Fitted new filter	002-3022-000	1
Alarms	Audible, visual, vibration	✓		429	
Display	Operation	 ✓ 			
Switches	Operation	1			
PCB	Operation	1		1	
Connectors	Condition	✓			
Firmware	Version	~	Version: 1.10		
Datalogger	Operation	~			
Monitor Housing	Condition	1			
Case	Condition/Type	1			
Sensors					
Oxygen	02	 ✓ 			
LEL	LEL	1			
PID	10.6eV	1			
Toxic 1	CO+H2S	1			-
Toxic 2		-			
Toxic 3		-			
Toxic 4		-			
Toxic 5		-			
		-			
Toxic 6					
Toxic 6 Other		-			
				Calibration	1

Unit Calibrated, Unit Serviceable.

Calibration Certificate

Sensor	Туре	Serial No:	Span Gas	Concentration	Traceability Lot #	CF	Reading	
							Zero	Span
Oxygen O2	02	03420050N5	Air	20.9%	Fresh air S33239-1		20.9	
	02		O ₂	18.0%				18.0
LEL	LEL	SC03110250N8	Methane	50%LEL	S33239-1		0	50
PID	10.6eV	O3A40077N5	Isobutylene	100ppm	S21306	1.	0	100
Toxic 1	CO+H2S	SC03130099N8 -	CO	50ppm	S33239-1	1.4	0	50
Toxic 2			H2S	10ppm	S33239-1		0	10
Toxic 3								
Toxic 4							1	1.11
Toxic 5								100
Toxic 6					-			
Other	** x ** * * X							1.1.1

Date:

Calibrated/Repaired by:

Bill Knobel

16 January 2013 Next Due:

16 July 2013

